| Step |
Hyp |
Ref |
Expression |
| 1 |
|
domeng |
|
| 2 |
|
bren |
|
| 3 |
2
|
biimpi |
|
| 4 |
|
ssufl |
|
| 5 |
|
simplr |
|
| 6 |
|
filfbas |
|
| 7 |
6
|
adantl |
|
| 8 |
|
f1of |
|
| 9 |
8
|
ad2antrr |
|
| 10 |
|
fmfil |
|
| 11 |
5 7 9 10
|
syl3anc |
|
| 12 |
|
ufli |
|
| 13 |
5 11 12
|
syl2anc |
|
| 14 |
|
f1odm |
|
| 15 |
14
|
adantr |
|
| 16 |
|
vex |
|
| 17 |
16
|
dmex |
|
| 18 |
15 17
|
eqeltrrdi |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
simprl |
|
| 21 |
|
f1ocnv |
|
| 22 |
21
|
ad3antrrr |
|
| 23 |
|
f1of |
|
| 24 |
22 23
|
syl |
|
| 25 |
|
fmufil |
|
| 26 |
19 20 24 25
|
syl3anc |
|
| 27 |
|
f1ococnv1 |
|
| 28 |
27
|
ad3antrrr |
|
| 29 |
28
|
oveq2d |
|
| 30 |
29
|
fveq1d |
|
| 31 |
5
|
adantr |
|
| 32 |
7
|
adantr |
|
| 33 |
8
|
ad3antrrr |
|
| 34 |
|
fmco |
|
| 35 |
19 31 32 24 33 34
|
syl32anc |
|
| 36 |
|
simplr |
|
| 37 |
|
fmid |
|
| 38 |
36 37
|
syl |
|
| 39 |
30 35 38
|
3eqtr3d |
|
| 40 |
11
|
adantr |
|
| 41 |
|
filfbas |
|
| 42 |
40 41
|
syl |
|
| 43 |
|
ufilfil |
|
| 44 |
|
filfbas |
|
| 45 |
20 43 44
|
3syl |
|
| 46 |
|
simprr |
|
| 47 |
|
fmss |
|
| 48 |
19 42 45 24 46 47
|
syl32anc |
|
| 49 |
39 48
|
eqsstrrd |
|
| 50 |
|
sseq2 |
|
| 51 |
50
|
rspcev |
|
| 52 |
26 49 51
|
syl2anc |
|
| 53 |
13 52
|
rexlimddv |
|
| 54 |
53
|
ralrimiva |
|
| 55 |
|
isufl |
|
| 56 |
18 55
|
syl |
|
| 57 |
54 56
|
mpbird |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
exlimiv |
|
| 60 |
59
|
imp |
|
| 61 |
3 4 60
|
syl2an |
|
| 62 |
61
|
an12s |
|
| 63 |
62
|
ex |
|
| 64 |
63
|
exlimdv |
|
| 65 |
1 64
|
sylbid |
|
| 66 |
65
|
imp |
|