Step |
Hyp |
Ref |
Expression |
1 |
|
ufilfil |
|
2 |
1
|
3ad2ant1 |
|
3 |
2
|
adantr |
|
4 |
|
simpr |
|
5 |
|
unss |
|
6 |
5
|
biimpi |
|
7 |
6
|
3adant1 |
|
8 |
7
|
adantr |
|
9 |
|
ssun1 |
|
10 |
9
|
a1i |
|
11 |
|
filss |
|
12 |
3 4 8 10 11
|
syl13anc |
|
13 |
12
|
ex |
|
14 |
2
|
adantr |
|
15 |
|
simpr |
|
16 |
7
|
adantr |
|
17 |
|
ssun2 |
|
18 |
17
|
a1i |
|
19 |
|
filss |
|
20 |
14 15 16 18 19
|
syl13anc |
|
21 |
20
|
ex |
|
22 |
13 21
|
jaod |
|
23 |
|
ufilb |
|
24 |
23
|
3adant3 |
|
25 |
24
|
adantr |
|
26 |
2
|
3ad2ant1 |
|
27 |
|
difun2 |
|
28 |
|
uncom |
|
29 |
28
|
difeq1i |
|
30 |
27 29
|
eqtr3i |
|
31 |
30
|
ineq2i |
|
32 |
|
indifcom |
|
33 |
|
indifcom |
|
34 |
31 32 33
|
3eqtr4i |
|
35 |
|
filin |
|
36 |
2 35
|
syl3an1 |
|
37 |
34 36
|
eqeltrid |
|
38 |
|
simp13 |
|
39 |
|
inss1 |
|
40 |
39
|
a1i |
|
41 |
|
filss |
|
42 |
26 37 38 40 41
|
syl13anc |
|
43 |
42
|
3expia |
|
44 |
25 43
|
sylbid |
|
45 |
44
|
orrd |
|
46 |
45
|
ex |
|
47 |
22 46
|
impbid |
|