Metamath Proof Explorer


Theorem ufprim

Description: An ultrafilter is a prime filter. (Contributed by Jeff Hankins, 1-Jan-2010) (Revised by Mario Carneiro, 2-Aug-2015)

Ref Expression
Assertion ufprim F UFil X A X B X A F B F A B F

Proof

Step Hyp Ref Expression
1 ufilfil F UFil X F Fil X
2 1 3ad2ant1 F UFil X A X B X F Fil X
3 2 adantr F UFil X A X B X A F F Fil X
4 simpr F UFil X A X B X A F A F
5 unss A X B X A B X
6 5 biimpi A X B X A B X
7 6 3adant1 F UFil X A X B X A B X
8 7 adantr F UFil X A X B X A F A B X
9 ssun1 A A B
10 9 a1i F UFil X A X B X A F A A B
11 filss F Fil X A F A B X A A B A B F
12 3 4 8 10 11 syl13anc F UFil X A X B X A F A B F
13 12 ex F UFil X A X B X A F A B F
14 2 adantr F UFil X A X B X B F F Fil X
15 simpr F UFil X A X B X B F B F
16 7 adantr F UFil X A X B X B F A B X
17 ssun2 B A B
18 17 a1i F UFil X A X B X B F B A B
19 filss F Fil X B F A B X B A B A B F
20 14 15 16 18 19 syl13anc F UFil X A X B X B F A B F
21 20 ex F UFil X A X B X B F A B F
22 13 21 jaod F UFil X A X B X A F B F A B F
23 ufilb F UFil X A X ¬ A F X A F
24 23 3adant3 F UFil X A X B X ¬ A F X A F
25 24 adantr F UFil X A X B X A B F ¬ A F X A F
26 2 3ad2ant1 F UFil X A X B X A B F X A F F Fil X
27 difun2 B A A = B A
28 uncom B A = A B
29 28 difeq1i B A A = A B A
30 27 29 eqtr3i B A = A B A
31 30 ineq2i X B A = X A B A
32 indifcom B X A = X B A
33 indifcom A B X A = X A B A
34 31 32 33 3eqtr4i B X A = A B X A
35 filin F Fil X A B F X A F A B X A F
36 2 35 syl3an1 F UFil X A X B X A B F X A F A B X A F
37 34 36 eqeltrid F UFil X A X B X A B F X A F B X A F
38 simp13 F UFil X A X B X A B F X A F B X
39 inss1 B X A B
40 39 a1i F UFil X A X B X A B F X A F B X A B
41 filss F Fil X B X A F B X B X A B B F
42 26 37 38 40 41 syl13anc F UFil X A X B X A B F X A F B F
43 42 3expia F UFil X A X B X A B F X A F B F
44 25 43 sylbid F UFil X A X B X A B F ¬ A F B F
45 44 orrd F UFil X A X B X A B F A F B F
46 45 ex F UFil X A X B X A B F A F B F
47 22 46 impbid F UFil X A X B X A F B F A B F