Metamath Proof Explorer


Theorem uhgr0

Description: The null graph represented by an empty set is a hypergraph. (Contributed by AV, 9-Oct-2020)

Ref Expression
Assertion uhgr0 UHGraph

Proof

Step Hyp Ref Expression
1 f0 :
2 dm0 dom =
3 pw0 𝒫 =
4 3 difeq1i 𝒫 =
5 difid =
6 4 5 eqtri 𝒫 =
7 2 6 feq23i : dom 𝒫 :
8 1 7 mpbir : dom 𝒫
9 0ex V
10 vtxval0 Vtx =
11 10 eqcomi = Vtx
12 iedgval0 iEdg =
13 12 eqcomi = iEdg
14 11 13 isuhgr V UHGraph : dom 𝒫
15 9 14 ax-mp UHGraph : dom 𝒫
16 8 15 mpbir UHGraph