Metamath Proof Explorer


Theorem uhgr0e

Description: The empty graph, with vertices but no edges, is a hypergraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypotheses uhgr0e.g φ G W
uhgr0e.e φ iEdg G =
Assertion uhgr0e φ G UHGraph

Proof

Step Hyp Ref Expression
1 uhgr0e.g φ G W
2 uhgr0e.e φ iEdg G =
3 f0 : 𝒫 Vtx G
4 dm0 dom =
5 4 feq2i : dom 𝒫 Vtx G : 𝒫 Vtx G
6 3 5 mpbir : dom 𝒫 Vtx G
7 eqid Vtx G = Vtx G
8 eqid iEdg G = iEdg G
9 7 8 isuhgr G W G UHGraph iEdg G : dom iEdg G 𝒫 Vtx G
10 1 9 syl φ G UHGraph iEdg G : dom iEdg G 𝒫 Vtx G
11 id iEdg G = iEdg G =
12 dmeq iEdg G = dom iEdg G = dom
13 11 12 feq12d iEdg G = iEdg G : dom iEdg G 𝒫 Vtx G : dom 𝒫 Vtx G
14 2 13 syl φ iEdg G : dom iEdg G 𝒫 Vtx G : dom 𝒫 Vtx G
15 10 14 bitrd φ G UHGraph : dom 𝒫 Vtx G
16 6 15 mpbiri φ G UHGraph