Metamath Proof Explorer


Theorem uhgr0edg0rgrb

Description: A hypergraph is 0-regular iff it has no edges. (Contributed by Alexander van der Vekens, 12-Jul-2018) (Revised by AV, 24-Dec-2020)

Ref Expression
Assertion uhgr0edg0rgrb GUHGraphGRegGraph0EdgG=

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid EdgG=EdgG
3 1 2 uhgrvd00 GUHGraphvVtxGVtxDegGv=0EdgG=
4 3 com12 vVtxGVtxDegGv=0GUHGraphEdgG=
5 4 adantl 00*vVtxGVtxDegGv=0GUHGraphEdgG=
6 eqid VtxDegG=VtxDegG
7 1 6 rgrprop GRegGraph000*vVtxGVtxDegGv=0
8 5 7 syl11 GUHGraphGRegGraph0EdgG=
9 uhgr0edg0rgr GUHGraphEdgG=GRegGraph0
10 9 ex GUHGraphEdgG=GRegGraph0
11 8 10 impbid GUHGraphGRegGraph0EdgG=