Metamath Proof Explorer


Theorem uhgr0edg0rgrb

Description: A hypergraph is 0-regular iff it has no edges. (Contributed by Alexander van der Vekens, 12-Jul-2018) (Revised by AV, 24-Dec-2020)

Ref Expression
Assertion uhgr0edg0rgrb G UHGraph G RegGraph 0 Edg G =

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid Edg G = Edg G
3 1 2 uhgrvd00 G UHGraph v Vtx G VtxDeg G v = 0 Edg G =
4 3 com12 v Vtx G VtxDeg G v = 0 G UHGraph Edg G =
5 4 adantl 0 0 * v Vtx G VtxDeg G v = 0 G UHGraph Edg G =
6 eqid VtxDeg G = VtxDeg G
7 1 6 rgrprop G RegGraph 0 0 0 * v Vtx G VtxDeg G v = 0
8 5 7 syl11 G UHGraph G RegGraph 0 Edg G =
9 uhgr0edg0rgr G UHGraph Edg G = G RegGraph 0
10 9 ex G UHGraph Edg G = G RegGraph 0
11 8 10 impbid G UHGraph G RegGraph 0 Edg G =