Metamath Proof Explorer


Theorem uhgr0edgfi

Description: A graph of order 0 (i.e. with 0 vertices) has a finite set of edges. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 10-Jan-2020) (Revised by AV, 8-Jun-2021)

Ref Expression
Assertion uhgr0edgfi G UHGraph Vtx G = 0 Edg G Fin

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid Edg G = Edg G
3 1 2 uhgr0vsize0 G UHGraph Vtx G = 0 Edg G = 0
4 fvex Edg G V
5 hasheq0 Edg G V Edg G = 0 Edg G =
6 4 5 ax-mp Edg G = 0 Edg G =
7 0fin Fin
8 eleq1 Edg G = Edg G Fin Fin
9 7 8 mpbiri Edg G = Edg G Fin
10 6 9 sylbi Edg G = 0 Edg G Fin
11 3 10 syl G UHGraph Vtx G = 0 Edg G Fin