Database
GRAPH THEORY
Undirected graphs
Examples for graphs
uhgr0v0e
Next ⟩
uhgr0vsize0
Metamath Proof Explorer
Ascii
Unicode
Theorem
uhgr0v0e
Description:
The null graph, with no vertices, has no edges.
(Contributed by
AV
, 21-Oct-2020)
Ref
Expression
Hypotheses
uhgr0v0e.v
⊢
V
=
Vtx
⁡
G
uhgr0v0e.e
⊢
E
=
Edg
⁡
G
Assertion
uhgr0v0e
⊢
G
∈
UHGraph
∧
V
=
∅
→
E
=
∅
Proof
Step
Hyp
Ref
Expression
1
uhgr0v0e.v
⊢
V
=
Vtx
⁡
G
2
uhgr0v0e.e
⊢
E
=
Edg
⁡
G
3
1
eqeq1i
⊢
V
=
∅
↔
Vtx
⁡
G
=
∅
4
uhgr0vb
⊢
G
∈
UHGraph
∧
Vtx
⁡
G
=
∅
→
G
∈
UHGraph
↔
iEdg
⁡
G
=
∅
5
4
biimpd
⊢
G
∈
UHGraph
∧
Vtx
⁡
G
=
∅
→
G
∈
UHGraph
→
iEdg
⁡
G
=
∅
6
5
ex
⊢
G
∈
UHGraph
→
Vtx
⁡
G
=
∅
→
G
∈
UHGraph
→
iEdg
⁡
G
=
∅
7
3
6
syl5bi
⊢
G
∈
UHGraph
→
V
=
∅
→
G
∈
UHGraph
→
iEdg
⁡
G
=
∅
8
7
pm2.43a
⊢
G
∈
UHGraph
→
V
=
∅
→
iEdg
⁡
G
=
∅
9
8
imp
⊢
G
∈
UHGraph
∧
V
=
∅
→
iEdg
⁡
G
=
∅
10
2
eqeq1i
⊢
E
=
∅
↔
Edg
⁡
G
=
∅
11
uhgriedg0edg0
⊢
G
∈
UHGraph
→
Edg
⁡
G
=
∅
↔
iEdg
⁡
G
=
∅
12
10
11
syl5bb
⊢
G
∈
UHGraph
→
E
=
∅
↔
iEdg
⁡
G
=
∅
13
12
adantr
⊢
G
∈
UHGraph
∧
V
=
∅
→
E
=
∅
↔
iEdg
⁡
G
=
∅
14
9
13
mpbird
⊢
G
∈
UHGraph
∧
V
=
∅
→
E
=
∅