Metamath Proof Explorer


Theorem uhgr0vsize0

Description: The size of a hypergraph with no vertices (the null graph) is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 7-Nov-2020)

Ref Expression
Hypotheses uhgr0v0e.v V = Vtx G
uhgr0v0e.e E = Edg G
Assertion uhgr0vsize0 G UHGraph V = 0 E = 0

Proof

Step Hyp Ref Expression
1 uhgr0v0e.v V = Vtx G
2 uhgr0v0e.e E = Edg G
3 1 2 uhgr0v0e G UHGraph V = E =
4 3 ex G UHGraph V = E =
5 1 fvexi V V
6 hasheq0 V V V = 0 V =
7 5 6 ax-mp V = 0 V =
8 2 fvexi E V
9 hasheq0 E V E = 0 E =
10 8 9 ax-mp E = 0 E =
11 4 7 10 3imtr4g G UHGraph V = 0 E = 0
12 11 imp G UHGraph V = 0 E = 0