Step |
Hyp |
Ref |
Expression |
1 |
|
usgrf1oedg.i |
|
2 |
|
usgrf1oedg.e |
|
3 |
|
uhgr2edg.v |
|
4 |
|
simp1l |
|
5 |
|
simp1r |
|
6 |
|
simp23 |
|
7 |
|
simp21 |
|
8 |
|
3simpc |
|
9 |
8
|
3ad2ant2 |
|
10 |
6 7 9
|
jca31 |
|
11 |
4 5 10
|
jca31 |
|
12 |
|
simp3 |
|
13 |
2
|
a1i |
|
14 |
|
edgval |
|
15 |
14
|
a1i |
|
16 |
1
|
eqcomi |
|
17 |
16
|
a1i |
|
18 |
17
|
rneqd |
|
19 |
13 15 18
|
3eqtrd |
|
20 |
19
|
eleq2d |
|
21 |
19
|
eleq2d |
|
22 |
20 21
|
anbi12d |
|
23 |
1
|
uhgrfun |
|
24 |
23
|
funfnd |
|
25 |
|
fvelrnb |
|
26 |
|
fvelrnb |
|
27 |
25 26
|
anbi12d |
|
28 |
24 27
|
syl |
|
29 |
22 28
|
bitrd |
|
30 |
29
|
ad2antrr |
|
31 |
|
reeanv |
|
32 |
|
fveqeq2 |
|
33 |
32
|
anbi1d |
|
34 |
|
eqtr2 |
|
35 |
|
prcom |
|
36 |
35
|
eqeq2i |
|
37 |
|
preq12bg |
|
38 |
37
|
ancom2s |
|
39 |
|
eqneqall |
|
40 |
39
|
adantl |
|
41 |
|
eqtr |
|
42 |
41
|
ancoms |
|
43 |
42 39
|
syl |
|
44 |
40 43
|
jaoi |
|
45 |
44
|
adantld |
|
46 |
38 45
|
syl6bi |
|
47 |
46
|
com3l |
|
48 |
47
|
impd |
|
49 |
36 48
|
sylbi |
|
50 |
34 49
|
syl |
|
51 |
33 50
|
syl6bi |
|
52 |
51
|
impcomd |
|
53 |
|
ax-1 |
|
54 |
52 53
|
pm2.61ine |
|
55 |
|
prid1g |
|
56 |
55
|
ad2antrr |
|
57 |
56
|
adantl |
|
58 |
|
eleq2 |
|
59 |
57 58
|
syl5ibr |
|
60 |
59
|
adantr |
|
61 |
60
|
impcom |
|
62 |
|
prid2g |
|
63 |
62
|
ad2antrr |
|
64 |
63
|
adantl |
|
65 |
|
eleq2 |
|
66 |
64 65
|
syl5ibr |
|
67 |
66
|
adantl |
|
68 |
67
|
impcom |
|
69 |
54 61 68
|
3jca |
|
70 |
69
|
ex |
|
71 |
70
|
reximdv |
|
72 |
71
|
reximdv |
|
73 |
31 72
|
syl5bir |
|
74 |
30 73
|
sylbid |
|
75 |
11 12 74
|
sylc |
|