Metamath Proof Explorer


Theorem uhgr3cyclexlem

Description: Lemma for uhgr3cyclex . (Contributed by AV, 12-Feb-2021)

Ref Expression
Hypotheses uhgr3cyclex.v V = Vtx G
uhgr3cyclex.e E = Edg G
uhgr3cyclex.i I = iEdg G
Assertion uhgr3cyclexlem A V B V A B J dom I B C = I J K dom I C A = I K J K

Proof

Step Hyp Ref Expression
1 uhgr3cyclex.v V = Vtx G
2 uhgr3cyclex.e E = Edg G
3 uhgr3cyclex.i I = iEdg G
4 fveq2 J = K I J = I K
5 4 eqeq2d J = K B C = I J B C = I K
6 eqeq2 I K = C A B C = I K B C = C A
7 6 eqcoms C A = I K B C = I K B C = C A
8 prcom C A = A C
9 8 eqeq1i C A = B C A C = B C
10 simpl A V B V A V
11 simpr A V B V B V
12 10 11 preq1b A V B V A C = B C A = B
13 12 biimpcd A C = B C A V B V A = B
14 9 13 sylbi C A = B C A V B V A = B
15 14 eqcoms B C = C A A V B V A = B
16 7 15 syl6bi C A = I K B C = I K A V B V A = B
17 16 adantl K dom I C A = I K B C = I K A V B V A = B
18 17 com12 B C = I K K dom I C A = I K A V B V A = B
19 5 18 syl6bi J = K B C = I J K dom I C A = I K A V B V A = B
20 19 adantld J = K J dom I B C = I J K dom I C A = I K A V B V A = B
21 20 com14 A V B V J dom I B C = I J K dom I C A = I K J = K A = B
22 21 imp32 A V B V J dom I B C = I J K dom I C A = I K J = K A = B
23 22 necon3d A V B V J dom I B C = I J K dom I C A = I K A B J K
24 23 impancom A V B V A B J dom I B C = I J K dom I C A = I K J K
25 24 imp A V B V A B J dom I B C = I J K dom I C A = I K J K