Metamath Proof Explorer


Theorem uhgredgn0

Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020)

Ref Expression
Assertion uhgredgn0 G UHGraph E Edg G E 𝒫 Vtx G

Proof

Step Hyp Ref Expression
1 edgval Edg G = ran iEdg G
2 eqid Vtx G = Vtx G
3 eqid iEdg G = iEdg G
4 2 3 uhgrf G UHGraph iEdg G : dom iEdg G 𝒫 Vtx G
5 4 frnd G UHGraph ran iEdg G 𝒫 Vtx G
6 1 5 eqsstrid G UHGraph Edg G 𝒫 Vtx G
7 6 sselda G UHGraph E Edg G E 𝒫 Vtx G