Metamath Proof Explorer


Theorem uhgreq12g

Description: If two sets have the same vertices and the same edges, one set is a hypergraph iff the other set is a hypergraph. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 18-Jan-2020)

Ref Expression
Hypotheses uhgrf.v V = Vtx G
uhgrf.e E = iEdg G
uhgreq12g.w W = Vtx H
uhgreq12g.f F = iEdg H
Assertion uhgreq12g G X H Y V = W E = F G UHGraph H UHGraph

Proof

Step Hyp Ref Expression
1 uhgrf.v V = Vtx G
2 uhgrf.e E = iEdg G
3 uhgreq12g.w W = Vtx H
4 uhgreq12g.f F = iEdg H
5 1 2 isuhgr G X G UHGraph E : dom E 𝒫 V
6 5 adantr G X H Y G UHGraph E : dom E 𝒫 V
7 6 adantr G X H Y V = W E = F G UHGraph E : dom E 𝒫 V
8 simpr V = W E = F E = F
9 8 dmeqd V = W E = F dom E = dom F
10 pweq V = W 𝒫 V = 𝒫 W
11 10 difeq1d V = W 𝒫 V = 𝒫 W
12 11 adantr V = W E = F 𝒫 V = 𝒫 W
13 8 9 12 feq123d V = W E = F E : dom E 𝒫 V F : dom F 𝒫 W
14 3 4 isuhgr H Y H UHGraph F : dom F 𝒫 W
15 14 adantl G X H Y H UHGraph F : dom F 𝒫 W
16 15 bicomd G X H Y F : dom F 𝒫 W H UHGraph
17 13 16 sylan9bbr G X H Y V = W E = F E : dom E 𝒫 V H UHGraph
18 7 17 bitrd G X H Y V = W E = F G UHGraph H UHGraph