Metamath Proof Explorer


Theorem uhgrf

Description: The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 9-Oct-2020)

Ref Expression
Hypotheses uhgrf.v V = Vtx G
uhgrf.e E = iEdg G
Assertion uhgrf G UHGraph E : dom E 𝒫 V

Proof

Step Hyp Ref Expression
1 uhgrf.v V = Vtx G
2 uhgrf.e E = iEdg G
3 1 2 isuhgr G UHGraph G UHGraph E : dom E 𝒫 V
4 3 ibi G UHGraph E : dom E 𝒫 V