Metamath Proof Explorer


Theorem uhgrissubgr

Description: The property of a hypergraph to be a subgraph. (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses uhgrissubgr.v V = Vtx S
uhgrissubgr.a A = Vtx G
uhgrissubgr.i I = iEdg S
uhgrissubgr.b B = iEdg G
Assertion uhgrissubgr G W Fun B S UHGraph S SubGraph G V A I B

Proof

Step Hyp Ref Expression
1 uhgrissubgr.v V = Vtx S
2 uhgrissubgr.a A = Vtx G
3 uhgrissubgr.i I = iEdg S
4 uhgrissubgr.b B = iEdg G
5 eqid Edg S = Edg S
6 1 2 3 4 5 subgrprop2 S SubGraph G V A I B Edg S 𝒫 V
7 3simpa V A I B Edg S 𝒫 V V A I B
8 6 7 syl S SubGraph G V A I B
9 simprl G W Fun B S UHGraph V A I B V A
10 simp2 G W Fun B S UHGraph Fun B
11 simpr V A I B I B
12 funssres Fun B I B B dom I = I
13 10 11 12 syl2an G W Fun B S UHGraph V A I B B dom I = I
14 13 eqcomd G W Fun B S UHGraph V A I B I = B dom I
15 edguhgr S UHGraph e Edg S e 𝒫 Vtx S
16 15 ex S UHGraph e Edg S e 𝒫 Vtx S
17 1 pweqi 𝒫 V = 𝒫 Vtx S
18 17 eleq2i e 𝒫 V e 𝒫 Vtx S
19 16 18 syl6ibr S UHGraph e Edg S e 𝒫 V
20 19 ssrdv S UHGraph Edg S 𝒫 V
21 20 3ad2ant3 G W Fun B S UHGraph Edg S 𝒫 V
22 21 adantr G W Fun B S UHGraph V A I B Edg S 𝒫 V
23 1 2 3 4 5 issubgr G W S UHGraph S SubGraph G V A I = B dom I Edg S 𝒫 V
24 23 3adant2 G W Fun B S UHGraph S SubGraph G V A I = B dom I Edg S 𝒫 V
25 24 adantr G W Fun B S UHGraph V A I B S SubGraph G V A I = B dom I Edg S 𝒫 V
26 9 14 22 25 mpbir3and G W Fun B S UHGraph V A I B S SubGraph G
27 26 ex G W Fun B S UHGraph V A I B S SubGraph G
28 8 27 impbid2 G W Fun B S UHGraph S SubGraph G V A I B