Metamath Proof Explorer


Theorem uhgrn0

Description: An edge is a nonempty subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 15-Dec-2020)

Ref Expression
Hypothesis uhgrfun.e E = iEdg G
Assertion uhgrn0 G UHGraph E Fn A F A E F

Proof

Step Hyp Ref Expression
1 uhgrfun.e E = iEdg G
2 eqid Vtx G = Vtx G
3 2 1 uhgrf G UHGraph E : dom E 𝒫 Vtx G
4 fndm E Fn A dom E = A
5 4 feq2d E Fn A E : dom E 𝒫 Vtx G E : A 𝒫 Vtx G
6 3 5 syl5ibcom G UHGraph E Fn A E : A 𝒫 Vtx G
7 6 imp G UHGraph E Fn A E : A 𝒫 Vtx G
8 7 ffvelrnda G UHGraph E Fn A F A E F 𝒫 Vtx G
9 8 3impa G UHGraph E Fn A F A E F 𝒫 Vtx G
10 eldifsni E F 𝒫 Vtx G E F
11 9 10 syl G UHGraph E Fn A F A E F