Metamath Proof Explorer


Theorem uhgrnbgr0nb

Description: A vertex which is not endpoint of an edge has no neighbor in a hypergraph. (Contributed by Alexander van der Vekens, 12-Oct-2017) (Revised by AV, 26-Oct-2020)

Ref Expression
Assertion uhgrnbgr0nb G UHGraph e Edg G N e G NeighbVtx N =

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid Edg G = Edg G
3 1 2 nbuhgr G UHGraph N V G NeighbVtx N = n Vtx G N | e Edg G N n e
4 3 adantlr G UHGraph e Edg G N e N V G NeighbVtx N = n Vtx G N | e Edg G N n e
5 df-nel N e ¬ N e
6 prssg N V n Vtx G N N e n e N n e
7 simpl N e n e N e
8 6 7 syl6bir N V n Vtx G N N n e N e
9 8 ad2antlr G UHGraph N V n Vtx G N e Edg G N n e N e
10 9 con3d G UHGraph N V n Vtx G N e Edg G ¬ N e ¬ N n e
11 5 10 syl5bi G UHGraph N V n Vtx G N e Edg G N e ¬ N n e
12 11 ralimdva G UHGraph N V n Vtx G N e Edg G N e e Edg G ¬ N n e
13 12 imp G UHGraph N V n Vtx G N e Edg G N e e Edg G ¬ N n e
14 ralnex e Edg G ¬ N n e ¬ e Edg G N n e
15 13 14 sylib G UHGraph N V n Vtx G N e Edg G N e ¬ e Edg G N n e
16 15 expcom e Edg G N e G UHGraph N V n Vtx G N ¬ e Edg G N n e
17 16 expd e Edg G N e G UHGraph N V n Vtx G N ¬ e Edg G N n e
18 17 impcom G UHGraph e Edg G N e N V n Vtx G N ¬ e Edg G N n e
19 18 expdimp G UHGraph e Edg G N e N V n Vtx G N ¬ e Edg G N n e
20 19 ralrimiv G UHGraph e Edg G N e N V n Vtx G N ¬ e Edg G N n e
21 rabeq0 n Vtx G N | e Edg G N n e = n Vtx G N ¬ e Edg G N n e
22 20 21 sylibr G UHGraph e Edg G N e N V n Vtx G N | e Edg G N n e =
23 4 22 eqtrd G UHGraph e Edg G N e N V G NeighbVtx N =
24 23 expcom N V G UHGraph e Edg G N e G NeighbVtx N =
25 id ¬ N V ¬ N V
26 25 intnand ¬ N V ¬ G V N V
27 nbgrprc0 ¬ G V N V G NeighbVtx N =
28 26 27 syl ¬ N V G NeighbVtx N =
29 28 a1d ¬ N V G UHGraph e Edg G N e G NeighbVtx N =
30 24 29 pm2.61i G UHGraph e Edg G N e G NeighbVtx N =