Description: A spanning subgraph S of a hypergraph G is a hypergraph. (Contributed by AV, 11-Oct-2020) (Proof shortened by AV, 18-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uhgrspan.v | ||
uhgrspan.e | |||
uhgrspan.s | |||
uhgrspan.q | |||
uhgrspan.r | |||
uhgrspan.g | |||
Assertion | uhgrspan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan.v | ||
2 | uhgrspan.e | ||
3 | uhgrspan.s | ||
4 | uhgrspan.q | ||
5 | uhgrspan.r | ||
6 | uhgrspan.g | ||
7 | 1 2 3 4 5 6 | uhgrspansubgr | |
8 | subuhgr | ||
9 | 6 7 8 | syl2anc |