Metamath Proof Explorer


Theorem uhgrspan

Description: A spanning subgraph S of a hypergraph G is a hypergraph. (Contributed by AV, 11-Oct-2020) (Proof shortened by AV, 18-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v V = Vtx G
uhgrspan.e E = iEdg G
uhgrspan.s φ S W
uhgrspan.q φ Vtx S = V
uhgrspan.r φ iEdg S = E A
uhgrspan.g φ G UHGraph
Assertion uhgrspan φ S UHGraph

Proof

Step Hyp Ref Expression
1 uhgrspan.v V = Vtx G
2 uhgrspan.e E = iEdg G
3 uhgrspan.s φ S W
4 uhgrspan.q φ Vtx S = V
5 uhgrspan.r φ iEdg S = E A
6 uhgrspan.g φ G UHGraph
7 1 2 3 4 5 6 uhgrspansubgr φ S SubGraph G
8 subuhgr G UHGraph S SubGraph G S UHGraph
9 6 7 8 syl2anc φ S UHGraph