Metamath Proof Explorer


Theorem uhgrspan1

Description: The induced subgraph S of a hypergraph G obtained by removing one vertex is actually a subgraph of G . A subgraph is called induced orspanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in Bollobas p. 2 and section 1.1 in Diestel p. 4). (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses uhgrspan1.v V = Vtx G
uhgrspan1.i I = iEdg G
uhgrspan1.f F = i dom I | N I i
uhgrspan1.s S = V N I F
Assertion uhgrspan1 G UHGraph N V S SubGraph G

Proof

Step Hyp Ref Expression
1 uhgrspan1.v V = Vtx G
2 uhgrspan1.i I = iEdg G
3 uhgrspan1.f F = i dom I | N I i
4 uhgrspan1.s S = V N I F
5 difssd G UHGraph N V V N V
6 1 2 3 4 uhgrspan1lem3 iEdg S = I F
7 resresdm iEdg S = I F iEdg S = I dom iEdg S
8 6 7 mp1i G UHGraph N V iEdg S = I dom iEdg S
9 2 uhgrfun G UHGraph Fun I
10 fvelima Fun I c I F j F I j = c
11 10 ex Fun I c I F j F I j = c
12 9 11 syl G UHGraph c I F j F I j = c
13 12 adantr G UHGraph N V c I F j F I j = c
14 eqidd i = j N = N
15 fveq2 i = j I i = I j
16 14 15 neleq12d i = j N I i N I j
17 16 3 elrab2 j F j dom I N I j
18 fvexd G UHGraph N V j dom I N I j I j V
19 1 2 uhgrss G UHGraph j dom I I j V
20 19 ad2ant2r G UHGraph N V j dom I N I j I j V
21 simprr G UHGraph N V j dom I N I j N I j
22 elpwdifsn I j V I j V N I j I j 𝒫 V N
23 18 20 21 22 syl3anc G UHGraph N V j dom I N I j I j 𝒫 V N
24 eleq1 c = I j c 𝒫 V N I j 𝒫 V N
25 24 eqcoms I j = c c 𝒫 V N I j 𝒫 V N
26 23 25 syl5ibrcom G UHGraph N V j dom I N I j I j = c c 𝒫 V N
27 26 ex G UHGraph N V j dom I N I j I j = c c 𝒫 V N
28 17 27 syl5bi G UHGraph N V j F I j = c c 𝒫 V N
29 28 rexlimdv G UHGraph N V j F I j = c c 𝒫 V N
30 13 29 syld G UHGraph N V c I F c 𝒫 V N
31 30 ssrdv G UHGraph N V I F 𝒫 V N
32 opex V N I F V
33 4 32 eqeltri S V
34 33 a1i N V S V
35 1 2 3 4 uhgrspan1lem2 Vtx S = V N
36 35 eqcomi V N = Vtx S
37 eqid iEdg S = iEdg S
38 6 rneqi ran iEdg S = ran I F
39 edgval Edg S = ran iEdg S
40 df-ima I F = ran I F
41 38 39 40 3eqtr4ri I F = Edg S
42 36 1 37 2 41 issubgr G UHGraph S V S SubGraph G V N V iEdg S = I dom iEdg S I F 𝒫 V N
43 34 42 sylan2 G UHGraph N V S SubGraph G V N V iEdg S = I dom iEdg S I F 𝒫 V N
44 5 8 31 43 mpbir3and G UHGraph N V S SubGraph G