Metamath Proof Explorer


Theorem uhgrspan1lem1

Description: Lemma 1 for uhgrspan1 . (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses uhgrspan1.v V = Vtx G
uhgrspan1.i I = iEdg G
uhgrspan1.f F = i dom I | N I i
Assertion uhgrspan1lem1 V N V I F V

Proof

Step Hyp Ref Expression
1 uhgrspan1.v V = Vtx G
2 uhgrspan1.i I = iEdg G
3 uhgrspan1.f F = i dom I | N I i
4 1 fvexi V V
5 4 difexi V N V
6 2 fvexi I V
7 6 resex I F V
8 5 7 pm3.2i V N V I F V