Metamath Proof Explorer


Theorem uhgrspan1lem2

Description: Lemma 2 for uhgrspan1 . (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses uhgrspan1.v V = Vtx G
uhgrspan1.i I = iEdg G
uhgrspan1.f F = i dom I | N I i
uhgrspan1.s S = V N I F
Assertion uhgrspan1lem2 Vtx S = V N

Proof

Step Hyp Ref Expression
1 uhgrspan1.v V = Vtx G
2 uhgrspan1.i I = iEdg G
3 uhgrspan1.f F = i dom I | N I i
4 uhgrspan1.s S = V N I F
5 4 fveq2i Vtx S = Vtx V N I F
6 1 2 3 uhgrspan1lem1 V N V I F V
7 opvtxfv V N V I F V Vtx V N I F = V N
8 6 7 ax-mp Vtx V N I F = V N
9 5 8 eqtri Vtx S = V N