Database
GRAPH THEORY
Undirected graphs
Subgraphs
uhgrspan1lem2
Next ⟩
uhgrspan1lem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
uhgrspan1lem2
Description:
Lemma 2 for
uhgrspan1
.
(Contributed by
AV
, 19-Nov-2020)
Ref
Expression
Hypotheses
uhgrspan1.v
⊢
V
=
Vtx
⁡
G
uhgrspan1.i
⊢
I
=
iEdg
⁡
G
uhgrspan1.f
⊢
F
=
i
∈
dom
⁡
I
|
N
∉
I
⁡
i
uhgrspan1.s
⊢
S
=
V
∖
N
I
↾
F
Assertion
uhgrspan1lem2
⊢
Vtx
⁡
S
=
V
∖
N
Proof
Step
Hyp
Ref
Expression
1
uhgrspan1.v
⊢
V
=
Vtx
⁡
G
2
uhgrspan1.i
⊢
I
=
iEdg
⁡
G
3
uhgrspan1.f
⊢
F
=
i
∈
dom
⁡
I
|
N
∉
I
⁡
i
4
uhgrspan1.s
⊢
S
=
V
∖
N
I
↾
F
5
4
fveq2i
⊢
Vtx
⁡
S
=
Vtx
⁡
V
∖
N
I
↾
F
6
1
2
3
uhgrspan1lem1
⊢
V
∖
N
∈
V
∧
I
↾
F
∈
V
7
opvtxfv
⊢
V
∖
N
∈
V
∧
I
↾
F
∈
V
→
Vtx
⁡
V
∖
N
I
↾
F
=
V
∖
N
8
6
7
ax-mp
⊢
Vtx
⁡
V
∖
N
I
↾
F
=
V
∖
N
9
5
8
eqtri
⊢
Vtx
⁡
S
=
V
∖
N