Metamath Proof Explorer


Theorem uhgrspanop

Description: A spanning subgraph of a hypergraph represented by an ordered pair is a hypergraph. (Contributed by Alexander van der Vekens, 27-Dec-2017) (Revised by AV, 11-Oct-2020)

Ref Expression
Hypotheses uhgrspanop.v V = Vtx G
uhgrspanop.e E = iEdg G
Assertion uhgrspanop G UHGraph V E A UHGraph

Proof

Step Hyp Ref Expression
1 uhgrspanop.v V = Vtx G
2 uhgrspanop.e E = iEdg G
3 opex V E A V
4 3 a1i G UHGraph V E A V
5 1 fvexi V V
6 2 fvexi E V
7 6 resex E A V
8 5 7 opvtxfvi Vtx V E A = V
9 8 a1i G UHGraph Vtx V E A = V
10 5 7 opiedgfvi iEdg V E A = E A
11 10 a1i G UHGraph iEdg V E A = E A
12 id G UHGraph G UHGraph
13 1 2 4 9 11 12 uhgrspan G UHGraph V E A UHGraph