Metamath Proof Explorer


Theorem uhgrsubgrself

Description: A hypergraph is a subgraph of itself. (Contributed by AV, 17-Nov-2020) (Proof shortened by AV, 21-Nov-2020)

Ref Expression
Assertion uhgrsubgrself G UHGraph G SubGraph G

Proof

Step Hyp Ref Expression
1 ssid Vtx G Vtx G
2 ssid iEdg G iEdg G
3 1 2 pm3.2i Vtx G Vtx G iEdg G iEdg G
4 eqid iEdg G = iEdg G
5 4 uhgrfun G UHGraph Fun iEdg G
6 id G UHGraph G UHGraph
7 eqid Vtx G = Vtx G
8 7 7 4 4 uhgrissubgr G UHGraph Fun iEdg G G UHGraph G SubGraph G Vtx G Vtx G iEdg G iEdg G
9 5 6 8 mpd3an23 G UHGraph G SubGraph G Vtx G Vtx G iEdg G iEdg G
10 3 9 mpbiri G UHGraph G SubGraph G