Metamath Proof Explorer


Theorem uhgrun

Description: The union U of two (undirected) hypergraphs G and H with the same vertex set V is a hypergraph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 11-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses uhgrun.g φ G UHGraph
uhgrun.h φ H UHGraph
uhgrun.e E = iEdg G
uhgrun.f F = iEdg H
uhgrun.vg V = Vtx G
uhgrun.vh φ Vtx H = V
uhgrun.i φ dom E dom F =
uhgrun.u φ U W
uhgrun.v φ Vtx U = V
uhgrun.un φ iEdg U = E F
Assertion uhgrun φ U UHGraph

Proof

Step Hyp Ref Expression
1 uhgrun.g φ G UHGraph
2 uhgrun.h φ H UHGraph
3 uhgrun.e E = iEdg G
4 uhgrun.f F = iEdg H
5 uhgrun.vg V = Vtx G
6 uhgrun.vh φ Vtx H = V
7 uhgrun.i φ dom E dom F =
8 uhgrun.u φ U W
9 uhgrun.v φ Vtx U = V
10 uhgrun.un φ iEdg U = E F
11 5 3 uhgrf G UHGraph E : dom E 𝒫 V
12 1 11 syl φ E : dom E 𝒫 V
13 eqid Vtx H = Vtx H
14 13 4 uhgrf H UHGraph F : dom F 𝒫 Vtx H
15 2 14 syl φ F : dom F 𝒫 Vtx H
16 6 eqcomd φ V = Vtx H
17 16 pweqd φ 𝒫 V = 𝒫 Vtx H
18 17 difeq1d φ 𝒫 V = 𝒫 Vtx H
19 18 feq3d φ F : dom F 𝒫 V F : dom F 𝒫 Vtx H
20 15 19 mpbird φ F : dom F 𝒫 V
21 12 20 7 fun2d φ E F : dom E dom F 𝒫 V
22 10 dmeqd φ dom iEdg U = dom E F
23 dmun dom E F = dom E dom F
24 22 23 eqtrdi φ dom iEdg U = dom E dom F
25 9 pweqd φ 𝒫 Vtx U = 𝒫 V
26 25 difeq1d φ 𝒫 Vtx U = 𝒫 V
27 10 24 26 feq123d φ iEdg U : dom iEdg U 𝒫 Vtx U E F : dom E dom F 𝒫 V
28 21 27 mpbird φ iEdg U : dom iEdg U 𝒫 Vtx U
29 eqid Vtx U = Vtx U
30 eqid iEdg U = iEdg U
31 29 30 isuhgr U W U UHGraph iEdg U : dom iEdg U 𝒫 Vtx U
32 8 31 syl φ U UHGraph iEdg U : dom iEdg U 𝒫 Vtx U
33 28 32 mpbird φ U UHGraph