Database
GRAPH THEORY
Undirected graphs
Undirected hypergraphs
uhgrunop
Metamath Proof Explorer
Description: The union of two (undirected) hypergraphs (with the same vertex set)
represented as ordered pair: If <. V , E >. and <. V , F >. are
hypergraphs, then <. V , E u. F >. is a hypergraph (the vertex set
stays the same, but the edges from both graphs are kept, possibly
resulting in two edges between two vertices). (Contributed by Alexander
van der Vekens , 27-Dec-2017) (Revised by AV , 11-Oct-2020) (Revised by AV , 24-Oct-2021)
Ref
Expression
Hypotheses
uhgrun.g
⊢ φ → G ∈ UHGraph
uhgrun.h
⊢ φ → H ∈ UHGraph
uhgrun.e
⊢ E = iEdg ⁡ G
uhgrun.f
⊢ F = iEdg ⁡ H
uhgrun.vg
⊢ V = Vtx ⁡ G
uhgrun.vh
⊢ φ → Vtx ⁡ H = V
uhgrun.i
⊢ φ → dom ⁡ E ∩ dom ⁡ F = ∅
Assertion
uhgrunop
⊢ φ → V E ∪ F ∈ UHGraph
Proof
Step
Hyp
Ref
Expression
1
uhgrun.g
⊢ φ → G ∈ UHGraph
2
uhgrun.h
⊢ φ → H ∈ UHGraph
3
uhgrun.e
⊢ E = iEdg ⁡ G
4
uhgrun.f
⊢ F = iEdg ⁡ H
5
uhgrun.vg
⊢ V = Vtx ⁡ G
6
uhgrun.vh
⊢ φ → Vtx ⁡ H = V
7
uhgrun.i
⊢ φ → dom ⁡ E ∩ dom ⁡ F = ∅
8
opex
⊢ V E ∪ F ∈ V
9
8
a1i
⊢ φ → V E ∪ F ∈ V
10
5
fvexi
⊢ V ∈ V
11
3
fvexi
⊢ E ∈ V
12
4
fvexi
⊢ F ∈ V
13
11 12
unex
⊢ E ∪ F ∈ V
14
10 13
pm3.2i
⊢ V ∈ V ∧ E ∪ F ∈ V
15
opvtxfv
⊢ V ∈ V ∧ E ∪ F ∈ V → Vtx ⁡ V E ∪ F = V
16
14 15
mp1i
⊢ φ → Vtx ⁡ V E ∪ F = V
17
opiedgfv
⊢ V ∈ V ∧ E ∪ F ∈ V → iEdg ⁡ V E ∪ F = E ∪ F
18
14 17
mp1i
⊢ φ → iEdg ⁡ V E ∪ F = E ∪ F
19
1 2 3 4 5 6 7 9 16 18
uhgrun
⊢ φ → V E ∪ F ∈ UHGraph