Step |
Hyp |
Ref |
Expression |
1 |
|
vtxdusgradjvtx.v |
|
2 |
|
vtxdusgradjvtx.e |
|
3 |
|
eqid |
|
4 |
1 2 3
|
vtxduhgr0edgnel |
|
5 |
|
ralnex |
|
6 |
4 5
|
bitr4di |
|
7 |
6
|
ralbidva |
|
8 |
|
ralcom |
|
9 |
|
ralnex2 |
|
10 |
8 9
|
bitri |
|
11 |
|
simpr |
|
12 |
2
|
eleq2i |
|
13 |
|
uhgredgn0 |
|
14 |
12 13
|
sylan2b |
|
15 |
|
eldifsn |
|
16 |
|
elpwi |
|
17 |
1
|
sseq2i |
|
18 |
|
ssn0rex |
|
19 |
18
|
ex |
|
20 |
17 19
|
sylbir |
|
21 |
16 20
|
syl |
|
22 |
21
|
imp |
|
23 |
15 22
|
sylbi |
|
24 |
14 23
|
syl |
|
25 |
11 24
|
jca |
|
26 |
25
|
ex |
|
27 |
26
|
eximdv |
|
28 |
|
n0 |
|
29 |
|
df-rex |
|
30 |
27 28 29
|
3imtr4g |
|
31 |
30
|
con3d |
|
32 |
10 31
|
syl5bi |
|
33 |
|
nne |
|
34 |
32 33
|
syl6ib |
|
35 |
7 34
|
sylbid |
|