Metamath Proof Explorer


Theorem uhgrvtxedgiedgb

Description: In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020) (Revised by AV, 6-Jul-2022)

Ref Expression
Hypotheses uhgrvtxedgiedgb.i I=iEdgG
uhgrvtxedgiedgb.e E=EdgG
Assertion uhgrvtxedgiedgb GUHGraphUVidomIUIieEUe

Proof

Step Hyp Ref Expression
1 uhgrvtxedgiedgb.i I=iEdgG
2 uhgrvtxedgiedgb.e E=EdgG
3 edgval EdgG=raniEdgG
4 3 a1i GUHGraphEdgG=raniEdgG
5 1 rneqi ranI=raniEdgG
6 4 2 5 3eqtr4g GUHGraphE=ranI
7 6 rexeqdv GUHGrapheEUeeranIUe
8 1 uhgrfun GUHGraphFunI
9 8 funfnd GUHGraphIFndomI
10 eleq2 e=IiUeUIi
11 10 rexrn IFndomIeranIUeidomIUIi
12 9 11 syl GUHGrapheranIUeidomIUIi
13 7 12 bitrd GUHGrapheEUeidomIUIi
14 13 adantr GUHGraphUVeEUeidomIUIi
15 14 bicomd GUHGraphUVidomIUIieEUe