Metamath Proof Explorer


Theorem uhgrvtxedgiedgb

Description: In a hypergraph, a vertex is incident with an edge iff it is contained in an element of the range of the edge function. (Contributed by AV, 24-Dec-2020) (Revised by AV, 6-Jul-2022)

Ref Expression
Hypotheses uhgrvtxedgiedgb.i I = iEdg G
uhgrvtxedgiedgb.e E = Edg G
Assertion uhgrvtxedgiedgb G UHGraph U V i dom I U I i e E U e

Proof

Step Hyp Ref Expression
1 uhgrvtxedgiedgb.i I = iEdg G
2 uhgrvtxedgiedgb.e E = Edg G
3 edgval Edg G = ran iEdg G
4 3 a1i G UHGraph Edg G = ran iEdg G
5 1 rneqi ran I = ran iEdg G
6 4 2 5 3eqtr4g G UHGraph E = ran I
7 6 rexeqdv G UHGraph e E U e e ran I U e
8 1 uhgrfun G UHGraph Fun I
9 8 funfnd G UHGraph I Fn dom I
10 eleq2 e = I i U e U I i
11 10 rexrn I Fn dom I e ran I U e i dom I U I i
12 9 11 syl G UHGraph e ran I U e i dom I U I i
13 7 12 bitrd G UHGraph e E U e i dom I U I i
14 13 adantr G UHGraph U V e E U e i dom I U I i
15 14 bicomd G UHGraph U V i dom I U I i e E U e