Step |
Hyp |
Ref |
Expression |
1 |
|
simpl31 |
|
2 |
|
uhgrwkspthlem1 |
|
3 |
2
|
expcom |
|
4 |
3
|
3ad2ant2 |
|
5 |
4
|
com12 |
|
6 |
5
|
3ad2ant1 |
|
7 |
6
|
3ad2ant3 |
|
8 |
7
|
imp |
|
9 |
|
istrl |
|
10 |
1 8 9
|
sylanbrc |
|
11 |
|
3simpc |
|
12 |
11
|
adantl |
|
13 |
|
3simpc |
|
14 |
13
|
3ad2ant3 |
|
15 |
14
|
adantr |
|
16 |
|
uhgrwkspthlem2 |
|
17 |
1 12 15 16
|
syl3anc |
|
18 |
|
isspth |
|
19 |
10 17 18
|
sylanbrc |
|
20 |
|
3anass |
|
21 |
19 15 20
|
sylanbrc |
|
22 |
|
3simpa |
|
23 |
22
|
adantr |
|
24 |
|
eqid |
|
25 |
24
|
isspthonpth |
|
26 |
23 25
|
syl |
|
27 |
21 26
|
mpbird |
|
28 |
27
|
ex |
|
29 |
24
|
wlkonprop |
|
30 |
|
3simpc |
|
31 |
30
|
3anim1i |
|
32 |
29 31
|
syl |
|
33 |
28 32
|
syl11 |
|
34 |
|
spthonpthon |
|
35 |
|
pthontrlon |
|
36 |
|
trlsonwlkon |
|
37 |
34 35 36
|
3syl |
|
38 |
33 37
|
impbid1 |
|