Metamath Proof Explorer


Theorem uhgrwkspth

Description: Any walk of length 1 between two different vertices is a simple path. (Contributed by AV, 25-Jan-2021) (Proof shortened by AV, 31-Oct-2021) (Revised by AV, 7-Jul-2022)

Ref Expression
Assertion uhgrwkspth G W F = 1 A B F A WalksOn G B P F A SPathsOn G B P

Proof

Step Hyp Ref Expression
1 simpl31 A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B F Walks G P
2 uhgrwkspthlem1 F Walks G P F = 1 Fun F -1
3 2 expcom F = 1 F Walks G P Fun F -1
4 3 3ad2ant2 G W F = 1 A B F Walks G P Fun F -1
5 4 com12 F Walks G P G W F = 1 A B Fun F -1
6 5 3ad2ant1 F Walks G P P 0 = A P F = B G W F = 1 A B Fun F -1
7 6 3ad2ant3 A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B Fun F -1
8 7 imp A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B Fun F -1
9 istrl F Trails G P F Walks G P Fun F -1
10 1 8 9 sylanbrc A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B F Trails G P
11 3simpc G W F = 1 A B F = 1 A B
12 11 adantl A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B F = 1 A B
13 3simpc F Walks G P P 0 = A P F = B P 0 = A P F = B
14 13 3ad2ant3 A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B P 0 = A P F = B
15 14 adantr A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B P 0 = A P F = B
16 uhgrwkspthlem2 F Walks G P F = 1 A B P 0 = A P F = B Fun P -1
17 1 12 15 16 syl3anc A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B Fun P -1
18 isspth F SPaths G P F Trails G P Fun P -1
19 10 17 18 sylanbrc A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B F SPaths G P
20 3anass F SPaths G P P 0 = A P F = B F SPaths G P P 0 = A P F = B
21 19 15 20 sylanbrc A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B F SPaths G P P 0 = A P F = B
22 3simpa A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B A Vtx G B Vtx G F V P V
23 22 adantr A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B A Vtx G B Vtx G F V P V
24 eqid Vtx G = Vtx G
25 24 isspthonpth A Vtx G B Vtx G F V P V F A SPathsOn G B P F SPaths G P P 0 = A P F = B
26 23 25 syl A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B F A SPathsOn G B P F SPaths G P P 0 = A P F = B
27 21 26 mpbird A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B F A SPathsOn G B P
28 27 ex A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B G W F = 1 A B F A SPathsOn G B P
29 24 wlkonprop F A WalksOn G B P G V A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B
30 3simpc G V A Vtx G B Vtx G A Vtx G B Vtx G
31 30 3anim1i G V A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B
32 29 31 syl F A WalksOn G B P A Vtx G B Vtx G F V P V F Walks G P P 0 = A P F = B
33 28 32 syl11 G W F = 1 A B F A WalksOn G B P F A SPathsOn G B P
34 spthonpthon F A SPathsOn G B P F A PathsOn G B P
35 pthontrlon F A PathsOn G B P F A TrailsOn G B P
36 trlsonwlkon F A TrailsOn G B P F A WalksOn G B P
37 34 35 36 3syl F A SPathsOn G B P F A WalksOn G B P
38 33 37 impbid1 G W F = 1 A B F A WalksOn G B P F A SPathsOn G B P