Database
GRAPH THEORY
Walks, paths and cycles
Paths and simple paths
uhgrwkspthlem1
Next ⟩
uhgrwkspthlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
uhgrwkspthlem1
Description:
Lemma 1 for
uhgrwkspth
.
(Contributed by
AV
, 25-Jan-2021)
Ref
Expression
Assertion
uhgrwkspthlem1
⊢
F
Walks
⁡
G
P
∧
F
=
1
→
Fun
⁡
F
-1
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
iEdg
⁡
G
=
iEdg
⁡
G
2
1
wlkf
⊢
F
Walks
⁡
G
P
→
F
∈
Word
dom
⁡
iEdg
⁡
G
3
wrdl1exs1
⊢
F
∈
Word
dom
⁡
iEdg
⁡
G
∧
F
=
1
→
∃
i
∈
dom
⁡
iEdg
⁡
G
F
=
〈“
i
”〉
4
funcnvs1
⊢
Fun
⁡
〈“
i
”〉
-1
5
cnveq
⊢
F
=
〈“
i
”〉
→
F
-1
=
〈“
i
”〉
-1
6
5
funeqd
⊢
F
=
〈“
i
”〉
→
Fun
⁡
F
-1
↔
Fun
⁡
〈“
i
”〉
-1
7
4
6
mpbiri
⊢
F
=
〈“
i
”〉
→
Fun
⁡
F
-1
8
7
rexlimivw
⊢
∃
i
∈
dom
⁡
iEdg
⁡
G
F
=
〈“
i
”〉
→
Fun
⁡
F
-1
9
3
8
syl
⊢
F
∈
Word
dom
⁡
iEdg
⁡
G
∧
F
=
1
→
Fun
⁡
F
-1
10
2
9
sylan
⊢
F
Walks
⁡
G
P
∧
F
=
1
→
Fun
⁡
F
-1