Metamath Proof Explorer


Theorem uhgrwkspthlem1

Description: Lemma 1 for uhgrwkspth . (Contributed by AV, 25-Jan-2021)

Ref Expression
Assertion uhgrwkspthlem1 F Walks G P F = 1 Fun F -1

Proof

Step Hyp Ref Expression
1 eqid iEdg G = iEdg G
2 1 wlkf F Walks G P F Word dom iEdg G
3 wrdl1exs1 F Word dom iEdg G F = 1 i dom iEdg G F = ⟨“ i ”⟩
4 funcnvs1 Fun ⟨“ i ”⟩ -1
5 cnveq F = ⟨“ i ”⟩ F -1 = ⟨“ i ”⟩ -1
6 5 funeqd F = ⟨“ i ”⟩ Fun F -1 Fun ⟨“ i ”⟩ -1
7 4 6 mpbiri F = ⟨“ i ”⟩ Fun F -1
8 7 rexlimivw i dom iEdg G F = ⟨“ i ”⟩ Fun F -1
9 3 8 syl F Word dom iEdg G F = 1 Fun F -1
10 2 9 sylan F Walks G P F = 1 Fun F -1