Metamath Proof Explorer


Theorem uhgrwkspthlem2

Description: Lemma 2 for uhgrwkspth . (Contributed by AV, 25-Jan-2021)

Ref Expression
Assertion uhgrwkspthlem2 F Walks G P F = 1 A B P 0 = A P F = B Fun P -1

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 1 wlkp F Walks G P P : 0 F Vtx G
3 oveq2 F = 1 0 F = 0 1
4 1e0p1 1 = 0 + 1
5 4 oveq2i 0 1 = 0 0 + 1
6 0z 0
7 fzpr 0 0 0 + 1 = 0 0 + 1
8 6 7 ax-mp 0 0 + 1 = 0 0 + 1
9 0p1e1 0 + 1 = 1
10 9 preq2i 0 0 + 1 = 0 1
11 5 8 10 3eqtri 0 1 = 0 1
12 3 11 eqtrdi F = 1 0 F = 0 1
13 12 feq2d F = 1 P : 0 F Vtx G P : 0 1 Vtx G
14 13 adantr F = 1 P 0 = A P F = B P : 0 F Vtx G P : 0 1 Vtx G
15 simpl P 0 = A P F = B P 0 = A
16 simpr P 0 = A P F = B P F = B
17 15 16 neeq12d P 0 = A P F = B P 0 P F A B
18 17 bicomd P 0 = A P F = B A B P 0 P F
19 fveq2 F = 1 P F = P 1
20 19 neeq2d F = 1 P 0 P F P 0 P 1
21 18 20 sylan9bbr F = 1 P 0 = A P F = B A B P 0 P 1
22 14 21 anbi12d F = 1 P 0 = A P F = B P : 0 F Vtx G A B P : 0 1 Vtx G P 0 P 1
23 1z 1
24 fpr2g 0 1 P : 0 1 Vtx G P 0 Vtx G P 1 Vtx G P = 0 P 0 1 P 1
25 6 23 24 mp2an P : 0 1 Vtx G P 0 Vtx G P 1 Vtx G P = 0 P 0 1 P 1
26 funcnvs2 P 0 Vtx G P 1 Vtx G P 0 P 1 Fun ⟨“ P 0 P 1 ”⟩ -1
27 26 3expa P 0 Vtx G P 1 Vtx G P 0 P 1 Fun ⟨“ P 0 P 1 ”⟩ -1
28 27 adantl P = 0 P 0 1 P 1 P 0 Vtx G P 1 Vtx G P 0 P 1 Fun ⟨“ P 0 P 1 ”⟩ -1
29 simpl P = 0 P 0 1 P 1 P 0 Vtx G P 1 Vtx G P 0 P 1 P = 0 P 0 1 P 1
30 s2prop P 0 Vtx G P 1 Vtx G ⟨“ P 0 P 1 ”⟩ = 0 P 0 1 P 1
31 30 eqcomd P 0 Vtx G P 1 Vtx G 0 P 0 1 P 1 = ⟨“ P 0 P 1 ”⟩
32 31 adantr P 0 Vtx G P 1 Vtx G P 0 P 1 0 P 0 1 P 1 = ⟨“ P 0 P 1 ”⟩
33 32 adantl P = 0 P 0 1 P 1 P 0 Vtx G P 1 Vtx G P 0 P 1 0 P 0 1 P 1 = ⟨“ P 0 P 1 ”⟩
34 29 33 eqtrd P = 0 P 0 1 P 1 P 0 Vtx G P 1 Vtx G P 0 P 1 P = ⟨“ P 0 P 1 ”⟩
35 34 cnveqd P = 0 P 0 1 P 1 P 0 Vtx G P 1 Vtx G P 0 P 1 P -1 = ⟨“ P 0 P 1 ”⟩ -1
36 35 funeqd P = 0 P 0 1 P 1 P 0 Vtx G P 1 Vtx G P 0 P 1 Fun P -1 Fun ⟨“ P 0 P 1 ”⟩ -1
37 28 36 mpbird P = 0 P 0 1 P 1 P 0 Vtx G P 1 Vtx G P 0 P 1 Fun P -1
38 37 exp32 P = 0 P 0 1 P 1 P 0 Vtx G P 1 Vtx G P 0 P 1 Fun P -1
39 38 impcom P 0 Vtx G P 1 Vtx G P = 0 P 0 1 P 1 P 0 P 1 Fun P -1
40 39 3impa P 0 Vtx G P 1 Vtx G P = 0 P 0 1 P 1 P 0 P 1 Fun P -1
41 25 40 sylbi P : 0 1 Vtx G P 0 P 1 Fun P -1
42 41 imp P : 0 1 Vtx G P 0 P 1 Fun P -1
43 22 42 syl6bi F = 1 P 0 = A P F = B P : 0 F Vtx G A B Fun P -1
44 43 expd F = 1 P 0 = A P F = B P : 0 F Vtx G A B Fun P -1
45 44 com12 P : 0 F Vtx G F = 1 P 0 = A P F = B A B Fun P -1
46 45 expd P : 0 F Vtx G F = 1 P 0 = A P F = B A B Fun P -1
47 46 com34 P : 0 F Vtx G F = 1 A B P 0 = A P F = B Fun P -1
48 47 impd P : 0 F Vtx G F = 1 A B P 0 = A P F = B Fun P -1
49 2 48 syl F Walks G P F = 1 A B P 0 = A P F = B Fun P -1
50 49 3imp F Walks G P F = 1 A B P 0 = A P F = B Fun P -1