Description: Lemma 2 for uhgrwkspth . (Contributed by AV, 25-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgrwkspthlem2 | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |
|
| 2 | 1 | wlkp | |
| 3 | oveq2 | |
|
| 4 | 1e0p1 | |
|
| 5 | 4 | oveq2i | |
| 6 | 0z | |
|
| 7 | fzpr | |
|
| 8 | 6 7 | ax-mp | |
| 9 | 0p1e1 | |
|
| 10 | 9 | preq2i | |
| 11 | 5 8 10 | 3eqtri | |
| 12 | 3 11 | eqtrdi | |
| 13 | 12 | feq2d | |
| 14 | 13 | adantr | |
| 15 | simpl | |
|
| 16 | simpr | |
|
| 17 | 15 16 | neeq12d | |
| 18 | 17 | bicomd | |
| 19 | fveq2 | |
|
| 20 | 19 | neeq2d | |
| 21 | 18 20 | sylan9bbr | |
| 22 | 14 21 | anbi12d | |
| 23 | 1z | |
|
| 24 | fpr2g | |
|
| 25 | 6 23 24 | mp2an | |
| 26 | funcnvs2 | |
|
| 27 | 26 | 3expa | |
| 28 | 27 | adantl | |
| 29 | simpl | |
|
| 30 | s2prop | |
|
| 31 | 30 | eqcomd | |
| 32 | 31 | adantr | |
| 33 | 32 | adantl | |
| 34 | 29 33 | eqtrd | |
| 35 | 34 | cnveqd | |
| 36 | 35 | funeqd | |
| 37 | 28 36 | mpbird | |
| 38 | 37 | exp32 | |
| 39 | 38 | impcom | |
| 40 | 39 | 3impa | |
| 41 | 25 40 | sylbi | |
| 42 | 41 | imp | |
| 43 | 22 42 | biimtrdi | |
| 44 | 43 | expd | |
| 45 | 44 | com12 | |
| 46 | 45 | expd | |
| 47 | 46 | com34 | |
| 48 | 47 | impd | |
| 49 | 2 48 | syl | |
| 50 | 49 | 3imp | |