Metamath Proof Explorer


Theorem ulmcau2

Description: A sequence of functions converges uniformly iff it is uniformly Cauchy, which is to say that for every 0 < x there is a j such that for all j <_ k , m the functions F ( k ) and F ( m ) are uniformly within x of each other on S . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses ulmcau.z Z = M
ulmcau.m φ M
ulmcau.s φ S V
ulmcau.f φ F : Z S
Assertion ulmcau2 φ F dom u S x + j Z k j m k z S F k z F m z < x

Proof

Step Hyp Ref Expression
1 ulmcau.z Z = M
2 ulmcau.m φ M
3 ulmcau.s φ S V
4 ulmcau.f φ F : Z S
5 1 2 3 4 ulmcau φ F dom u S x + j Z k j z S F k z F j z < x
6 1 2 3 4 ulmcaulem φ x + j Z k j z S F k z F j z < x x + j Z k j m k z S F k z F m z < x
7 5 6 bitrd φ F dom u S x + j Z k j m k z S F k z F m z < x