Metamath Proof Explorer


Theorem ulmcaulem

Description: Lemma for ulmcau and ulmcau2 : show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 . (Contributed by Mario Carneiro, 1-Mar-2015)

Ref Expression
Hypotheses ulmcau.z Z = M
ulmcau.m φ M
ulmcau.s φ S V
ulmcau.f φ F : Z S
Assertion ulmcaulem φ x + j Z k j z S F k z F j z < x x + j Z k j m k z S F k z F m z < x

Proof

Step Hyp Ref Expression
1 ulmcau.z Z = M
2 ulmcau.m φ M
3 ulmcau.s φ S V
4 ulmcau.f φ F : Z S
5 breq2 x = w F k z F j z < x F k z F j z < w
6 5 ralbidv x = w z S F k z F j z < x z S F k z F j z < w
7 6 rexralbidv x = w j Z k j z S F k z F j z < x j Z k j z S F k z F j z < w
8 7 cbvralvw x + j Z k j z S F k z F j z < x w + j Z k j z S F k z F j z < w
9 rphalfcl x + x 2 +
10 breq2 w = x 2 F k z F j z < w F k z F j z < x 2
11 10 ralbidv w = x 2 z S F k z F j z < w z S F k z F j z < x 2
12 11 rexralbidv w = x 2 j Z k j z S F k z F j z < w j Z k j z S F k z F j z < x 2
13 12 rspcv x 2 + w + j Z k j z S F k z F j z < w j Z k j z S F k z F j z < x 2
14 9 13 syl x + w + j Z k j z S F k z F j z < w j Z k j z S F k z F j z < x 2
15 14 adantl φ x + w + j Z k j z S F k z F j z < w j Z k j z S F k z F j z < x 2
16 fveq2 k = m F k = F m
17 16 fveq1d k = m F k z = F m z
18 17 fvoveq1d k = m F k z F j z = F m z F j z
19 18 breq1d k = m F k z F j z < x 2 F m z F j z < x 2
20 19 ralbidv k = m z S F k z F j z < x 2 z S F m z F j z < x 2
21 20 cbvralvw k j z S F k z F j z < x 2 m j z S F m z F j z < x 2
22 21 biimpi k j z S F k z F j z < x 2 m j z S F m z F j z < x 2
23 uzss k j k j
24 23 ad2antlr φ x + j Z k j z S F k z F j z < x 2 k j
25 ssralv k j m j z S F m z F j z < x 2 m k z S F m z F j z < x 2
26 24 25 syl φ x + j Z k j z S F k z F j z < x 2 m j z S F m z F j z < x 2 m k z S F m z F j z < x 2
27 r19.26 z S F k z F j z < x 2 F m z F j z < x 2 z S F k z F j z < x 2 z S F m z F j z < x 2
28 4 adantr φ x + F : Z S
29 28 ad3antrrr φ x + j Z k j m k F : Z S
30 1 uztrn2 j Z k j k Z
31 30 adantll φ x + j Z k j k Z
32 1 uztrn2 k Z m k m Z
33 31 32 sylan φ x + j Z k j m k m Z
34 29 33 ffvelrnd φ x + j Z k j m k F m S
35 elmapi F m S F m : S
36 34 35 syl φ x + j Z k j m k F m : S
37 36 ffvelrnda φ x + j Z k j m k z S F m z
38 28 ffvelrnda φ x + j Z F j S
39 38 ad2antrr φ x + j Z k j m k F j S
40 elmapi F j S F j : S
41 39 40 syl φ x + j Z k j m k F j : S
42 41 ffvelrnda φ x + j Z k j m k z S F j z
43 37 42 abssubd φ x + j Z k j m k z S F m z F j z = F j z F m z
44 43 breq1d φ x + j Z k j m k z S F m z F j z < x 2 F j z F m z < x 2
45 44 biimpd φ x + j Z k j m k z S F m z F j z < x 2 F j z F m z < x 2
46 ffvelrn F : Z S k Z F k S
47 28 30 46 syl2an φ x + j Z k j F k S
48 47 anassrs φ x + j Z k j F k S
49 48 adantr φ x + j Z k j m k F k S
50 elmapi F k S F k : S
51 49 50 syl φ x + j Z k j m k F k : S
52 51 ffvelrnda φ x + j Z k j m k z S F k z
53 rpre x + x
54 53 ad2antlr φ x + j Z x
55 54 ad3antrrr φ x + j Z k j m k z S x
56 abs3lem F k z F m z F j z x F k z F j z < x 2 F j z F m z < x 2 F k z F m z < x
57 52 37 42 55 56 syl22anc φ x + j Z k j m k z S F k z F j z < x 2 F j z F m z < x 2 F k z F m z < x
58 45 57 sylan2d φ x + j Z k j m k z S F k z F j z < x 2 F m z F j z < x 2 F k z F m z < x
59 58 ralimdva φ x + j Z k j m k z S F k z F j z < x 2 F m z F j z < x 2 z S F k z F m z < x
60 27 59 syl5bir φ x + j Z k j m k z S F k z F j z < x 2 z S F m z F j z < x 2 z S F k z F m z < x
61 60 expdimp φ x + j Z k j m k z S F k z F j z < x 2 z S F m z F j z < x 2 z S F k z F m z < x
62 61 an32s φ x + j Z k j z S F k z F j z < x 2 m k z S F m z F j z < x 2 z S F k z F m z < x
63 62 ralimdva φ x + j Z k j z S F k z F j z < x 2 m k z S F m z F j z < x 2 m k z S F k z F m z < x
64 26 63 syld φ x + j Z k j z S F k z F j z < x 2 m j z S F m z F j z < x 2 m k z S F k z F m z < x
65 64 impancom φ x + j Z k j m j z S F m z F j z < x 2 z S F k z F j z < x 2 m k z S F k z F m z < x
66 65 an32s φ x + j Z m j z S F m z F j z < x 2 k j z S F k z F j z < x 2 m k z S F k z F m z < x
67 66 ralimdva φ x + j Z m j z S F m z F j z < x 2 k j z S F k z F j z < x 2 k j m k z S F k z F m z < x
68 67 ex φ x + j Z m j z S F m z F j z < x 2 k j z S F k z F j z < x 2 k j m k z S F k z F m z < x
69 68 com23 φ x + j Z k j z S F k z F j z < x 2 m j z S F m z F j z < x 2 k j m k z S F k z F m z < x
70 22 69 mpdi φ x + j Z k j z S F k z F j z < x 2 k j m k z S F k z F m z < x
71 70 reximdva φ x + j Z k j z S F k z F j z < x 2 j Z k j m k z S F k z F m z < x
72 15 71 syld φ x + w + j Z k j z S F k z F j z < w j Z k j m k z S F k z F m z < x
73 72 ralrimdva φ w + j Z k j z S F k z F j z < w x + j Z k j m k z S F k z F m z < x
74 8 73 syl5bi φ x + j Z k j z S F k z F j z < x x + j Z k j m k z S F k z F m z < x
75 eluzelz j M j
76 75 1 eleq2s j Z j
77 uzid j j j
78 76 77 syl j Z j j
79 78 adantl φ j Z j j
80 fveq2 k = j k = j
81 fveq2 k = j F k = F j
82 81 fveq1d k = j F k z = F j z
83 82 fvoveq1d k = j F k z F m z = F j z F m z
84 83 breq1d k = j F k z F m z < x F j z F m z < x
85 84 ralbidv k = j z S F k z F m z < x z S F j z F m z < x
86 80 85 raleqbidv k = j m k z S F k z F m z < x m j z S F j z F m z < x
87 86 rspcv j j k j m k z S F k z F m z < x m j z S F j z F m z < x
88 79 87 syl φ j Z k j m k z S F k z F m z < x m j z S F j z F m z < x
89 fveq2 m = k F m = F k
90 89 fveq1d m = k F m z = F k z
91 90 oveq2d m = k F j z F m z = F j z F k z
92 91 fveq2d m = k F j z F m z = F j z F k z
93 92 breq1d m = k F j z F m z < x F j z F k z < x
94 93 ralbidv m = k z S F j z F m z < x z S F j z F k z < x
95 94 cbvralvw m j z S F j z F m z < x k j z S F j z F k z < x
96 4 ffvelrnda φ j Z F j S
97 96 adantr φ j Z k j F j S
98 97 40 syl φ j Z k j F j : S
99 98 ffvelrnda φ j Z k j z S F j z
100 4 30 46 syl2an φ j Z k j F k S
101 100 anassrs φ j Z k j F k S
102 101 50 syl φ j Z k j F k : S
103 102 ffvelrnda φ j Z k j z S F k z
104 99 103 abssubd φ j Z k j z S F j z F k z = F k z F j z
105 104 breq1d φ j Z k j z S F j z F k z < x F k z F j z < x
106 105 ralbidva φ j Z k j z S F j z F k z < x z S F k z F j z < x
107 106 ralbidva φ j Z k j z S F j z F k z < x k j z S F k z F j z < x
108 95 107 syl5bb φ j Z m j z S F j z F m z < x k j z S F k z F j z < x
109 88 108 sylibd φ j Z k j m k z S F k z F m z < x k j z S F k z F j z < x
110 109 reximdva φ j Z k j m k z S F k z F m z < x j Z k j z S F k z F j z < x
111 110 ralimdv φ x + j Z k j m k z S F k z F m z < x x + j Z k j z S F k z F j z < x
112 74 111 impbid φ x + j Z k j z S F k z F j z < x x + j Z k j m k z S F k z F m z < x