Metamath Proof Explorer


Theorem ulmclm

Description: A uniform limit of functions converges pointwise. (Contributed by Mario Carneiro, 27-Feb-2015)

Ref Expression
Hypotheses ulmclm.z Z = M
ulmclm.m φ M
ulmclm.f φ F : Z S
ulmclm.a φ A S
ulmclm.h φ H W
ulmclm.e φ k Z F k A = H k
ulmclm.u φ F u S G
Assertion ulmclm φ H G A

Proof

Step Hyp Ref Expression
1 ulmclm.z Z = M
2 ulmclm.m φ M
3 ulmclm.f φ F : Z S
4 ulmclm.a φ A S
5 ulmclm.h φ H W
6 ulmclm.e φ k Z F k A = H k
7 ulmclm.u φ F u S G
8 fveq2 z = A F k z = F k A
9 fveq2 z = A G z = G A
10 8 9 oveq12d z = A F k z G z = F k A G A
11 10 fveq2d z = A F k z G z = F k A G A
12 11 breq1d z = A F k z G z < x F k A G A < x
13 12 rspcv A S z S F k z G z < x F k A G A < x
14 4 13 syl φ z S F k z G z < x F k A G A < x
15 14 ralimdv φ k j z S F k z G z < x k j F k A G A < x
16 15 reximdv φ j Z k j z S F k z G z < x j Z k j F k A G A < x
17 16 ralimdv φ x + j Z k j z S F k z G z < x x + j Z k j F k A G A < x
18 eqidd φ k Z z S F k z = F k z
19 eqidd φ z S G z = G z
20 ulmcl F u S G G : S
21 7 20 syl φ G : S
22 ulmscl F u S G S V
23 7 22 syl φ S V
24 1 2 3 18 19 21 23 ulm2 φ F u S G x + j Z k j z S F k z G z < x
25 6 eqcomd φ k Z H k = F k A
26 21 4 ffvelrnd φ G A
27 3 ffvelrnda φ k Z F k S
28 elmapi F k S F k : S
29 27 28 syl φ k Z F k : S
30 4 adantr φ k Z A S
31 29 30 ffvelrnd φ k Z F k A
32 1 2 5 25 26 31 clim2c φ H G A x + j Z k j F k A G A < x
33 17 24 32 3imtr4d φ F u S G H G A
34 7 33 mpd φ H G A