Metamath Proof Explorer


Theorem ulmdm

Description: Two ways to express that a function has a limit. (The expression ( ( ~>uS )F ) is sometimes useful as a shorthand for "the unique limit of the function F "). (Contributed by Mario Carneiro, 5-Jul-2017)

Ref Expression
Assertion ulmdm F dom u S F u S u S F

Proof

Step Hyp Ref Expression
1 ulmrel Rel u S
2 ulmuni x u S y x u S z y = z
3 2 ax-gen z x u S y x u S z y = z
4 3 gen2 x y z x u S y x u S z y = z
5 dffun2 Fun u S Rel u S x y z x u S y x u S z y = z
6 1 4 5 mpbir2an Fun u S
7 funfvbrb Fun u S F dom u S F u S u S F
8 6 7 ax-mp F dom u S F u S u S F