Metamath Proof Explorer


Theorem ulmdvlem2

Description: Lemma for ulmdv . (Contributed by Mario Carneiro, 8-May-2015)

Ref Expression
Hypotheses ulmdv.z Z = M
ulmdv.s φ S
ulmdv.m φ M
ulmdv.f φ F : Z X
ulmdv.g φ G : X
ulmdv.l φ z X k Z F k z G z
ulmdv.u φ k Z S D F k u X H
Assertion ulmdvlem2 φ k Z dom F k S = X

Proof

Step Hyp Ref Expression
1 ulmdv.z Z = M
2 ulmdv.s φ S
3 ulmdv.m φ M
4 ulmdv.f φ F : Z X
5 ulmdv.g φ G : X
6 ulmdv.l φ z X k Z F k z G z
7 ulmdv.u φ k Z S D F k u X H
8 ovex S D F k V
9 8 rgenw k Z S D F k V
10 eqid k Z S D F k = k Z S D F k
11 10 fnmpt k Z S D F k V k Z S D F k Fn Z
12 9 11 mp1i φ k Z S D F k Fn Z
13 ulmf2 k Z S D F k Fn Z k Z S D F k u X H k Z S D F k : Z X
14 12 7 13 syl2anc φ k Z S D F k : Z X
15 14 fvmptelrn φ k Z S D F k X
16 elmapi S D F k X F k S : X
17 fdm F k S : X dom F k S = X
18 15 16 17 3syl φ k Z dom F k S = X