Database
BASIC REAL AND COMPLEX FUNCTIONS
Sequences and series
Uniform convergence
ulmdvlem2
Next ⟩
ulmdvlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
ulmdvlem2
Description:
Lemma for
ulmdv
.
(Contributed by
Mario Carneiro
, 8-May-2015)
Ref
Expression
Hypotheses
ulmdv.z
⊢
Z
=
ℤ
≥
M
ulmdv.s
⊢
φ
→
S
∈
ℝ
ℂ
ulmdv.m
⊢
φ
→
M
∈
ℤ
ulmdv.f
⊢
φ
→
F
:
Z
⟶
ℂ
X
ulmdv.g
⊢
φ
→
G
:
X
⟶
ℂ
ulmdv.l
⊢
φ
∧
z
∈
X
→
k
∈
Z
⟼
F
⁡
k
⁡
z
⇝
G
⁡
z
ulmdv.u
⊢
φ
→
k
∈
Z
⟼
S
D
F
⁡
k
⇝
u
⁡
X
H
Assertion
ulmdvlem2
⊢
φ
∧
k
∈
Z
→
dom
⁡
F
⁡
k
S
′
=
X
Proof
Step
Hyp
Ref
Expression
1
ulmdv.z
⊢
Z
=
ℤ
≥
M
2
ulmdv.s
⊢
φ
→
S
∈
ℝ
ℂ
3
ulmdv.m
⊢
φ
→
M
∈
ℤ
4
ulmdv.f
⊢
φ
→
F
:
Z
⟶
ℂ
X
5
ulmdv.g
⊢
φ
→
G
:
X
⟶
ℂ
6
ulmdv.l
⊢
φ
∧
z
∈
X
→
k
∈
Z
⟼
F
⁡
k
⁡
z
⇝
G
⁡
z
7
ulmdv.u
⊢
φ
→
k
∈
Z
⟼
S
D
F
⁡
k
⇝
u
⁡
X
H
8
ovex
⊢
S
D
F
⁡
k
∈
V
9
8
rgenw
⊢
∀
k
∈
Z
S
D
F
⁡
k
∈
V
10
eqid
⊢
k
∈
Z
⟼
S
D
F
⁡
k
=
k
∈
Z
⟼
S
D
F
⁡
k
11
10
fnmpt
⊢
∀
k
∈
Z
S
D
F
⁡
k
∈
V
→
k
∈
Z
⟼
S
D
F
⁡
k
Fn
Z
12
9
11
mp1i
⊢
φ
→
k
∈
Z
⟼
S
D
F
⁡
k
Fn
Z
13
ulmf2
⊢
k
∈
Z
⟼
S
D
F
⁡
k
Fn
Z
∧
k
∈
Z
⟼
S
D
F
⁡
k
⇝
u
⁡
X
H
→
k
∈
Z
⟼
S
D
F
⁡
k
:
Z
⟶
ℂ
X
14
12
7
13
syl2anc
⊢
φ
→
k
∈
Z
⟼
S
D
F
⁡
k
:
Z
⟶
ℂ
X
15
14
fvmptelrn
⊢
φ
∧
k
∈
Z
→
S
D
F
⁡
k
∈
ℂ
X
16
elmapi
⊢
S
D
F
⁡
k
∈
ℂ
X
→
F
⁡
k
S
′
:
X
⟶
ℂ
17
fdm
⊢
F
⁡
k
S
′
:
X
⟶
ℂ
→
dom
⁡
F
⁡
k
S
′
=
X
18
15
16
17
3syl
⊢
φ
∧
k
∈
Z
→
dom
⁡
F
⁡
k
S
′
=
X