Metamath Proof Explorer


Theorem ulmdvlem3

Description: Lemma for ulmdv . (Contributed by Mario Carneiro, 8-May-2015) (Proof shortened by Mario Carneiro, 28-Dec-2016)

Ref Expression
Hypotheses ulmdv.z Z = M
ulmdv.s φ S
ulmdv.m φ M
ulmdv.f φ F : Z X
ulmdv.g φ G : X
ulmdv.l φ z X k Z F k z G z
ulmdv.u φ k Z S D F k u X H
Assertion ulmdvlem3 φ z X z G S H z

Proof

Step Hyp Ref Expression
1 ulmdv.z Z = M
2 ulmdv.s φ S
3 ulmdv.m φ M
4 ulmdv.f φ F : Z X
5 ulmdv.g φ G : X
6 ulmdv.l φ z X k Z F k z G z
7 ulmdv.u φ k Z S D F k u X H
8 biidd k = M X int TopOpen fld 𝑡 S X X int TopOpen fld 𝑡 S X
9 1 2 3 4 5 6 7 ulmdvlem2 φ k Z dom F k S = X
10 recnprss S S
11 2 10 syl φ S
12 11 adantr φ k Z S
13 4 ffvelrnda φ k Z F k X
14 elmapi F k X F k : X
15 13 14 syl φ k Z F k : X
16 dvbsss dom F k S S
17 9 16 eqsstrrdi φ k Z X S
18 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
19 eqid TopOpen fld = TopOpen fld
20 12 15 17 18 19 dvbssntr φ k Z dom F k S int TopOpen fld 𝑡 S X
21 9 20 eqsstrrd φ k Z X int TopOpen fld 𝑡 S X
22 21 ralrimiva φ k Z X int TopOpen fld 𝑡 S X
23 uzid M M M
24 3 23 syl φ M M
25 24 1 eleqtrrdi φ M Z
26 8 22 25 rspcdva φ X int TopOpen fld 𝑡 S X
27 26 sselda φ z X z int TopOpen fld 𝑡 S X
28 ulmcl k Z S D F k u X H H : X
29 7 28 syl φ H : X
30 29 ffvelrnda φ z X H z
31 breq2 s = r 2 2 F n S x F m S x < s F n S x F m S x < r 2 2
32 31 2ralbidv s = r 2 2 m n x X F n S x F m S x < s m n x X F n S x F m S x < r 2 2
33 32 rexralbidv s = r 2 2 j Z n j m n x X F n S x F m S x < s j Z n j m n x X F n S x F m S x < r 2 2
34 ulmrel Rel u X
35 releldm Rel u X k Z S D F k u X H k Z S D F k dom u X
36 34 7 35 sylancr φ k Z S D F k dom u X
37 ulmscl k Z S D F k u X H X V
38 7 37 syl φ X V
39 ovex S D F k V
40 39 rgenw k Z S D F k V
41 eqid k Z S D F k = k Z S D F k
42 41 fnmpt k Z S D F k V k Z S D F k Fn Z
43 40 42 mp1i φ k Z S D F k Fn Z
44 ulmf2 k Z S D F k Fn Z k Z S D F k u X H k Z S D F k : Z X
45 43 7 44 syl2anc φ k Z S D F k : Z X
46 1 3 38 45 ulmcau2 φ k Z S D F k dom u X s + j Z n j m n x X k Z S D F k n x k Z S D F k m x < s
47 36 46 mpbid φ s + j Z n j m n x X k Z S D F k n x k Z S D F k m x < s
48 1 uztrn2 j Z n j n Z
49 48 ad2ant2lr φ j Z n j m n n Z
50 fveq2 k = n F k = F n
51 50 oveq2d k = n S D F k = S D F n
52 ovex S D F n V
53 51 41 52 fvmpt n Z k Z S D F k n = S D F n
54 49 53 syl φ j Z n j m n k Z S D F k n = S D F n
55 54 fveq1d φ j Z n j m n k Z S D F k n x = F n S x
56 simprr φ j Z n j m n m n
57 1 uztrn2 n Z m n m Z
58 49 56 57 syl2anc φ j Z n j m n m Z
59 fveq2 k = m F k = F m
60 59 oveq2d k = m S D F k = S D F m
61 ovex S D F m V
62 60 41 61 fvmpt m Z k Z S D F k m = S D F m
63 58 62 syl φ j Z n j m n k Z S D F k m = S D F m
64 63 fveq1d φ j Z n j m n k Z S D F k m x = F m S x
65 55 64 oveq12d φ j Z n j m n k Z S D F k n x k Z S D F k m x = F n S x F m S x
66 65 fveq2d φ j Z n j m n k Z S D F k n x k Z S D F k m x = F n S x F m S x
67 66 breq1d φ j Z n j m n k Z S D F k n x k Z S D F k m x < s F n S x F m S x < s
68 67 ralbidv φ j Z n j m n x X k Z S D F k n x k Z S D F k m x < s x X F n S x F m S x < s
69 68 2ralbidva φ j Z n j m n x X k Z S D F k n x k Z S D F k m x < s n j m n x X F n S x F m S x < s
70 69 rexbidva φ j Z n j m n x X k Z S D F k n x k Z S D F k m x < s j Z n j m n x X F n S x F m S x < s
71 70 ralbidv φ s + j Z n j m n x X k Z S D F k n x k Z S D F k m x < s s + j Z n j m n x X F n S x F m S x < s
72 47 71 mpbid φ s + j Z n j m n x X F n S x F m S x < s
73 72 ad2antrr φ z X r + s + j Z n j m n x X F n S x F m S x < s
74 rphalfcl r + r 2 +
75 74 adantl φ z X r + r 2 +
76 rphalfcl r 2 + r 2 2 +
77 75 76 syl φ z X r + r 2 2 +
78 33 73 77 rspcdva φ z X r + j Z n j m n x X F n S x F m S x < r 2 2
79 3 ad2antrr φ z X r + M
80 51 fveq1d k = n F k S z = F n S z
81 eqid k Z F k S z = k Z F k S z
82 fvex F n S z V
83 80 81 82 fvmpt n Z k Z F k S z n = F n S z
84 83 adantl φ z X r + n Z k Z F k S z n = F n S z
85 45 ad2antrr φ z X r + k Z S D F k : Z X
86 simplr φ z X r + z X
87 1 fvexi Z V
88 87 mptex k Z F k S z V
89 88 a1i φ z X r + k Z F k S z V
90 53 adantl φ z X r + n Z k Z S D F k n = S D F n
91 90 fveq1d φ z X r + n Z k Z S D F k n z = F n S z
92 91 84 eqtr4d φ z X r + n Z k Z S D F k n z = k Z F k S z n
93 7 ad2antrr φ z X r + k Z S D F k u X H
94 1 79 85 86 89 92 93 ulmclm φ z X r + k Z F k S z H z
95 1 79 75 84 94 climi2 φ z X r + j Z n j F n S z H z < r 2
96 1 rexanuz2 j Z n j m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 j Z n j m n x X F n S x F m S x < r 2 2 j Z n j F n S z H z < r 2
97 1 r19.2uz j Z n j m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2
98 96 97 sylbir j Z n j m n x X F n S x F m S x < r 2 2 j Z n j F n S z H z < r 2 n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2
99 fveq2 y = v F n y = F n v
100 99 oveq1d y = v F n y F n z = F n v F n z
101 oveq1 y = v y z = v z
102 100 101 oveq12d y = v F n y F n z y z = F n v F n z v z
103 eqid y X z F n y F n z y z = y X z F n y F n z y z
104 ovex F n v F n z v z V
105 102 103 104 fvmpt v X z y X z F n y F n z y z v = F n v F n z v z
106 105 fvoveq1d v X z y X z F n y F n z y z v F n S z = F n v F n z v z F n S z
107 id s = r 2 2 s = r 2 2
108 106 107 breqan12rd s = r 2 2 v X z y X z F n y F n z y z v F n S z < s F n v F n z v z F n S z < r 2 2
109 108 imbi2d s = r 2 2 v X z v z v z < w y X z F n y F n z y z v F n S z < s v z v z < w F n v F n z v z F n S z < r 2 2
110 109 ralbidva s = r 2 2 v X z v z v z < w y X z F n y F n z y z v F n S z < s v X z v z v z < w F n v F n z v z F n S z < r 2 2
111 110 rexbidv s = r 2 2 w + v X z v z v z < w y X z F n y F n z y z v F n S z < s w + v X z v z v z < w F n v F n z v z F n S z < r 2 2
112 simpllr φ z X r + n Z z X
113 85 ffvelrnda φ z X r + n Z k Z S D F k n X
114 90 113 eqeltrrd φ z X r + n Z S D F n X
115 elmapi S D F n X F n S : X
116 fdm F n S : X dom F n S = X
117 114 115 116 3syl φ z X r + n Z dom F n S = X
118 112 117 eleqtrrd φ z X r + n Z z dom F n S
119 2 ad3antrrr φ z X r + n Z S
120 dvfg S F n S : dom F n S
121 ffun F n S : dom F n S Fun F n S
122 funfvbrb Fun F n S z dom F n S z F n S F n S z
123 119 120 121 122 4syl φ z X r + n Z z dom F n S z F n S F n S z
124 118 123 mpbid φ z X r + n Z z F n S F n S z
125 119 10 syl φ z X r + n Z S
126 4 ad2antrr φ z X r + F : Z X
127 126 ffvelrnda φ z X r + n Z F n X
128 elmapi F n X F n : X
129 127 128 syl φ z X r + n Z F n : X
130 biidd k = M X S X S
131 17 ralrimiva φ k Z X S
132 130 131 25 rspcdva φ X S
133 132 ad3antrrr φ z X r + n Z X S
134 18 19 103 125 129 133 eldv φ z X r + n Z z F n S F n S z z int TopOpen fld 𝑡 S X F n S z y X z F n y F n z y z lim z
135 124 134 mpbid φ z X r + n Z z int TopOpen fld 𝑡 S X F n S z y X z F n y F n z y z lim z
136 135 simprd φ z X r + n Z F n S z y X z F n y F n z y z lim z
137 132 adantr φ z X X S
138 11 adantr φ z X S
139 137 138 sstrd φ z X X
140 139 ad2antrr φ z X r + n Z X
141 129 140 112 dvlem φ z X r + n Z y X z F n y F n z y z
142 141 fmpttd φ z X r + n Z y X z F n y F n z y z : X z
143 140 ssdifssd φ z X r + n Z X z
144 140 112 sseldd φ z X r + n Z z
145 142 143 144 ellimc3 φ z X r + n Z F n S z y X z F n y F n z y z lim z F n S z s + w + v X z v z v z < w y X z F n y F n z y z v F n S z < s
146 136 145 mpbid φ z X r + n Z F n S z s + w + v X z v z v z < w y X z F n y F n z y z v F n S z < s
147 146 simprd φ z X r + n Z s + w + v X z v z v z < w y X z F n y F n z y z v F n S z < s
148 77 adantr φ z X r + n Z r 2 2 +
149 111 147 148 rspcdva φ z X r + n Z w + v X z v z v z < w F n v F n z v z F n S z < r 2 2
150 149 adantrr φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 w + v X z v z v z < w F n v F n z v z F n S z < r 2 2
151 anass φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w +
152 df-3an n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u
153 anass φ z X r + φ z X r +
154 6 ralrimiva φ z X k Z F k z G z
155 fveq2 z = s F k z = F k s
156 155 mpteq2dv z = s k Z F k z = k Z F k s
157 fveq2 z = s G z = G s
158 156 157 breq12d z = s k Z F k z G z k Z F k s G s
159 158 rspccva z X k Z F k z G z s X k Z F k s G s
160 154 159 sylan φ s X k Z F k s G s
161 simprll φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u z X
162 simprlr φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u r +
163 simprr3 φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u
164 simplll u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u u +
165 163 164 syl φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u u +
166 simplr u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u w +
167 163 166 syl φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u w +
168 simpllr u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u u < w z ball abs S × S u X
169 163 168 syl φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u u < w z ball abs S × S u X
170 169 simpld φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u u < w
171 169 simprd φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u z ball abs S × S u X
172 simpr3 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u v z v z < u
173 163 172 syl φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u v z v z < u
174 173 simprd φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u v z < u
175 simprr1 φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u n Z
176 simprr2 φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u m n x X F n S x F m S x < r 2 2 F n S z H z < r 2
177 176 simpld φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u m n x X F n S x F m S x < r 2 2
178 176 simprd φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u F n S z H z < r 2
179 simpr1 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u v X z
180 163 179 syl φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u v X z
181 180 eldifad φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u v X
182 173 simpld φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u v z
183 simpr2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u v z v z < w F n v F n z v z F n S z < r 2 2
184 163 183 syl φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u v z v z < w F n v F n z v z F n S z < r 2 2
185 182 184 mpand φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u v z < w F n v F n z v z F n S z < r 2 2
186 1 2 3 4 5 160 7 161 162 165 167 170 171 174 175 177 178 181 182 185 ulmdvlem1 φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u G v G z v z H z < r
187 186 anassrs φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u G v G z v z H z < r
188 153 187 sylanb φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u G v G z v z H z < r
189 152 188 sylan2br φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u G v G z v z H z < r
190 189 anassrs φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u G v G z v z H z < r
191 190 anassrs φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u G v G z v z H z < r
192 151 191 sylanb φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u G v G z v z H z < r
193 192 3exp2 φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u G v G z v z H z < r
194 193 imp φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u G v G z v z H z < r
195 fveq2 y = v G y = G v
196 195 oveq1d y = v G y G z = G v G z
197 196 101 oveq12d y = v G y G z y z = G v G z v z
198 eqid y X z G y G z y z = y X z G y G z y z
199 ovex G v G z v z V
200 197 198 199 fvmpt v X z y X z G y G z y z v = G v G z v z
201 200 fvoveq1d v X z y X z G y G z y z v H z = G v G z v z H z
202 201 breq1d v X z y X z G y G z y z v H z < r G v G z v z H z < r
203 202 imbi2d v X z v z v z < u y X z G y G z y z v H z < r v z v z < u G v G z v z H z < r
204 203 adantl φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < u y X z G y G z y z v H z < r v z v z < u G v G z v z H z < r
205 194 204 sylibrd φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v z v z < u y X z G y G z y z v H z < r
206 205 ralimdva φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v X z v z v z < u y X z G y G z y z v H z < r
207 206 impr φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + u < w z ball abs S × S u X w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 v X z v z v z < u y X z G y G z y z v H z < r
208 207 an32s φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 u + u < w z ball abs S × S u X v X z v z v z < u y X z G y G z y z v H z < r
209 cnxmet abs ∞Met
210 xmetres2 abs ∞Met S abs S × S ∞Met S
211 209 138 210 sylancr φ z X abs S × S ∞Met S
212 211 ad3antrrr φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 abs S × S ∞Met S
213 19 cnfldtop TopOpen fld Top
214 resttop TopOpen fld Top S TopOpen fld 𝑡 S Top
215 213 2 214 sylancr φ TopOpen fld 𝑡 S Top
216 19 cnfldtopon TopOpen fld TopOn
217 resttopon TopOpen fld TopOn S TopOpen fld 𝑡 S TopOn S
218 216 11 217 sylancr φ TopOpen fld 𝑡 S TopOn S
219 toponuni TopOpen fld 𝑡 S TopOn S S = TopOpen fld 𝑡 S
220 218 219 syl φ S = TopOpen fld 𝑡 S
221 132 220 sseqtrd φ X TopOpen fld 𝑡 S
222 eqid TopOpen fld 𝑡 S = TopOpen fld 𝑡 S
223 222 ntrss2 TopOpen fld 𝑡 S Top X TopOpen fld 𝑡 S int TopOpen fld 𝑡 S X X
224 215 221 223 syl2anc φ int TopOpen fld 𝑡 S X X
225 224 26 eqssd φ int TopOpen fld 𝑡 S X = X
226 222 isopn3 TopOpen fld 𝑡 S Top X TopOpen fld 𝑡 S X TopOpen fld 𝑡 S int TopOpen fld 𝑡 S X = X
227 215 221 226 syl2anc φ X TopOpen fld 𝑡 S int TopOpen fld 𝑡 S X = X
228 225 227 mpbird φ X TopOpen fld 𝑡 S
229 eqid abs S × S = abs S × S
230 19 cnfldtopn TopOpen fld = MetOpen abs
231 eqid MetOpen abs S × S = MetOpen abs S × S
232 229 230 231 metrest abs ∞Met S TopOpen fld 𝑡 S = MetOpen abs S × S
233 209 11 232 sylancr φ TopOpen fld 𝑡 S = MetOpen abs S × S
234 228 233 eleqtrd φ X MetOpen abs S × S
235 234 adantr φ z X X MetOpen abs S × S
236 235 ad3antrrr φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 X MetOpen abs S × S
237 86 ad2antrr φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 z X
238 simprl φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 w +
239 231 mopni3 abs S × S ∞Met S X MetOpen abs S × S z X w + u + u < w z ball abs S × S u X
240 212 236 237 238 239 syl31anc φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 u + u < w z ball abs S × S u X
241 208 240 reximddv φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 w + v X z v z v z < w F n v F n z v z F n S z < r 2 2 u + v X z v z v z < u y X z G y G z y z v H z < r
242 150 241 rexlimddv φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + v X z v z v z < u y X z G y G z y z v H z < r
243 242 rexlimdvaa φ z X r + n Z m n x X F n S x F m S x < r 2 2 F n S z H z < r 2 u + v X z v z v z < u y X z G y G z y z v H z < r
244 98 243 syl5 φ z X r + j Z n j m n x X F n S x F m S x < r 2 2 j Z n j F n S z H z < r 2 u + v X z v z v z < u y X z G y G z y z v H z < r
245 78 95 244 mp2and φ z X r + u + v X z v z v z < u y X z G y G z y z v H z < r
246 245 ralrimiva φ z X r + u + v X z v z v z < u y X z G y G z y z v H z < r
247 5 adantr φ z X G : X
248 simpr φ z X z X
249 247 139 248 dvlem φ z X y X z G y G z y z
250 249 fmpttd φ z X y X z G y G z y z : X z
251 139 ssdifssd φ z X X z
252 139 248 sseldd φ z X z
253 250 251 252 ellimc3 φ z X H z y X z G y G z y z lim z H z r + u + v X z v z v z < u y X z G y G z y z v H z < r
254 30 246 253 mpbir2and φ z X H z y X z G y G z y z lim z
255 18 19 198 138 247 137 eldv φ z X z G S H z z int TopOpen fld 𝑡 S X H z y X z G y G z y z lim z
256 27 254 255 mpbir2and φ z X z G S H z