Step |
Hyp |
Ref |
Expression |
1 |
|
ulmdv.z |
|
2 |
|
ulmdv.s |
|
3 |
|
ulmdv.m |
|
4 |
|
ulmdv.f |
|
5 |
|
ulmdv.g |
|
6 |
|
ulmdv.l |
|
7 |
|
ulmdv.u |
|
8 |
|
biidd |
|
9 |
1 2 3 4 5 6 7
|
ulmdvlem2 |
|
10 |
|
recnprss |
|
11 |
2 10
|
syl |
|
12 |
11
|
adantr |
|
13 |
4
|
ffvelrnda |
|
14 |
|
elmapi |
|
15 |
13 14
|
syl |
|
16 |
|
dvbsss |
|
17 |
9 16
|
eqsstrrdi |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
12 15 17 18 19
|
dvbssntr |
|
21 |
9 20
|
eqsstrrd |
|
22 |
21
|
ralrimiva |
|
23 |
|
uzid |
|
24 |
3 23
|
syl |
|
25 |
24 1
|
eleqtrrdi |
|
26 |
8 22 25
|
rspcdva |
|
27 |
26
|
sselda |
|
28 |
|
ulmcl |
|
29 |
7 28
|
syl |
|
30 |
29
|
ffvelrnda |
|
31 |
|
breq2 |
|
32 |
31
|
2ralbidv |
|
33 |
32
|
rexralbidv |
|
34 |
|
ulmrel |
|
35 |
|
releldm |
|
36 |
34 7 35
|
sylancr |
|
37 |
|
ulmscl |
|
38 |
7 37
|
syl |
|
39 |
|
ovex |
|
40 |
39
|
rgenw |
|
41 |
|
eqid |
|
42 |
41
|
fnmpt |
|
43 |
40 42
|
mp1i |
|
44 |
|
ulmf2 |
|
45 |
43 7 44
|
syl2anc |
|
46 |
1 3 38 45
|
ulmcau2 |
|
47 |
36 46
|
mpbid |
|
48 |
1
|
uztrn2 |
|
49 |
48
|
ad2ant2lr |
|
50 |
|
fveq2 |
|
51 |
50
|
oveq2d |
|
52 |
|
ovex |
|
53 |
51 41 52
|
fvmpt |
|
54 |
49 53
|
syl |
|
55 |
54
|
fveq1d |
|
56 |
|
simprr |
|
57 |
1
|
uztrn2 |
|
58 |
49 56 57
|
syl2anc |
|
59 |
|
fveq2 |
|
60 |
59
|
oveq2d |
|
61 |
|
ovex |
|
62 |
60 41 61
|
fvmpt |
|
63 |
58 62
|
syl |
|
64 |
63
|
fveq1d |
|
65 |
55 64
|
oveq12d |
|
66 |
65
|
fveq2d |
|
67 |
66
|
breq1d |
|
68 |
67
|
ralbidv |
|
69 |
68
|
2ralbidva |
|
70 |
69
|
rexbidva |
|
71 |
70
|
ralbidv |
|
72 |
47 71
|
mpbid |
|
73 |
72
|
ad2antrr |
|
74 |
|
rphalfcl |
|
75 |
74
|
adantl |
|
76 |
|
rphalfcl |
|
77 |
75 76
|
syl |
|
78 |
33 73 77
|
rspcdva |
|
79 |
3
|
ad2antrr |
|
80 |
51
|
fveq1d |
|
81 |
|
eqid |
|
82 |
|
fvex |
|
83 |
80 81 82
|
fvmpt |
|
84 |
83
|
adantl |
|
85 |
45
|
ad2antrr |
|
86 |
|
simplr |
|
87 |
1
|
fvexi |
|
88 |
87
|
mptex |
|
89 |
88
|
a1i |
|
90 |
53
|
adantl |
|
91 |
90
|
fveq1d |
|
92 |
91 84
|
eqtr4d |
|
93 |
7
|
ad2antrr |
|
94 |
1 79 85 86 89 92 93
|
ulmclm |
|
95 |
1 79 75 84 94
|
climi2 |
|
96 |
1
|
rexanuz2 |
|
97 |
1
|
r19.2uz |
|
98 |
96 97
|
sylbir |
|
99 |
|
fveq2 |
|
100 |
99
|
oveq1d |
|
101 |
|
oveq1 |
|
102 |
100 101
|
oveq12d |
|
103 |
|
eqid |
|
104 |
|
ovex |
|
105 |
102 103 104
|
fvmpt |
|
106 |
105
|
fvoveq1d |
|
107 |
|
id |
|
108 |
106 107
|
breqan12rd |
|
109 |
108
|
imbi2d |
|
110 |
109
|
ralbidva |
|
111 |
110
|
rexbidv |
|
112 |
|
simpllr |
|
113 |
85
|
ffvelrnda |
|
114 |
90 113
|
eqeltrrd |
|
115 |
|
elmapi |
|
116 |
|
fdm |
|
117 |
114 115 116
|
3syl |
|
118 |
112 117
|
eleqtrrd |
|
119 |
2
|
ad3antrrr |
|
120 |
|
dvfg |
|
121 |
|
ffun |
|
122 |
|
funfvbrb |
|
123 |
119 120 121 122
|
4syl |
|
124 |
118 123
|
mpbid |
|
125 |
119 10
|
syl |
|
126 |
4
|
ad2antrr |
|
127 |
126
|
ffvelrnda |
|
128 |
|
elmapi |
|
129 |
127 128
|
syl |
|
130 |
|
biidd |
|
131 |
17
|
ralrimiva |
|
132 |
130 131 25
|
rspcdva |
|
133 |
132
|
ad3antrrr |
|
134 |
18 19 103 125 129 133
|
eldv |
|
135 |
124 134
|
mpbid |
|
136 |
135
|
simprd |
|
137 |
132
|
adantr |
|
138 |
11
|
adantr |
|
139 |
137 138
|
sstrd |
|
140 |
139
|
ad2antrr |
|
141 |
129 140 112
|
dvlem |
|
142 |
141
|
fmpttd |
|
143 |
140
|
ssdifssd |
|
144 |
140 112
|
sseldd |
|
145 |
142 143 144
|
ellimc3 |
|
146 |
136 145
|
mpbid |
|
147 |
146
|
simprd |
|
148 |
77
|
adantr |
|
149 |
111 147 148
|
rspcdva |
|
150 |
149
|
adantrr |
|
151 |
|
anass |
|
152 |
|
df-3an |
|
153 |
|
anass |
|
154 |
6
|
ralrimiva |
|
155 |
|
fveq2 |
|
156 |
155
|
mpteq2dv |
|
157 |
|
fveq2 |
|
158 |
156 157
|
breq12d |
|
159 |
158
|
rspccva |
|
160 |
154 159
|
sylan |
|
161 |
|
simprll |
|
162 |
|
simprlr |
|
163 |
|
simprr3 |
|
164 |
|
simplll |
|
165 |
163 164
|
syl |
|
166 |
|
simplr |
|
167 |
163 166
|
syl |
|
168 |
|
simpllr |
|
169 |
163 168
|
syl |
|
170 |
169
|
simpld |
|
171 |
169
|
simprd |
|
172 |
|
simpr3 |
|
173 |
163 172
|
syl |
|
174 |
173
|
simprd |
|
175 |
|
simprr1 |
|
176 |
|
simprr2 |
|
177 |
176
|
simpld |
|
178 |
176
|
simprd |
|
179 |
|
simpr1 |
|
180 |
163 179
|
syl |
|
181 |
180
|
eldifad |
|
182 |
173
|
simpld |
|
183 |
|
simpr2 |
|
184 |
163 183
|
syl |
|
185 |
182 184
|
mpand |
|
186 |
1 2 3 4 5 160 7 161 162 165 167 170 171 174 175 177 178 181 182 185
|
ulmdvlem1 |
|
187 |
186
|
anassrs |
|
188 |
153 187
|
sylanb |
|
189 |
152 188
|
sylan2br |
|
190 |
189
|
anassrs |
|
191 |
190
|
anassrs |
|
192 |
151 191
|
sylanb |
|
193 |
192
|
3exp2 |
|
194 |
193
|
imp |
|
195 |
|
fveq2 |
|
196 |
195
|
oveq1d |
|
197 |
196 101
|
oveq12d |
|
198 |
|
eqid |
|
199 |
|
ovex |
|
200 |
197 198 199
|
fvmpt |
|
201 |
200
|
fvoveq1d |
|
202 |
201
|
breq1d |
|
203 |
202
|
imbi2d |
|
204 |
203
|
adantl |
|
205 |
194 204
|
sylibrd |
|
206 |
205
|
ralimdva |
|
207 |
206
|
impr |
|
208 |
207
|
an32s |
|
209 |
|
cnxmet |
|
210 |
|
xmetres2 |
|
211 |
209 138 210
|
sylancr |
|
212 |
211
|
ad3antrrr |
|
213 |
19
|
cnfldtop |
|
214 |
|
resttop |
|
215 |
213 2 214
|
sylancr |
|
216 |
19
|
cnfldtopon |
|
217 |
|
resttopon |
|
218 |
216 11 217
|
sylancr |
|
219 |
|
toponuni |
|
220 |
218 219
|
syl |
|
221 |
132 220
|
sseqtrd |
|
222 |
|
eqid |
|
223 |
222
|
ntrss2 |
|
224 |
215 221 223
|
syl2anc |
|
225 |
224 26
|
eqssd |
|
226 |
222
|
isopn3 |
|
227 |
215 221 226
|
syl2anc |
|
228 |
225 227
|
mpbird |
|
229 |
|
eqid |
|
230 |
19
|
cnfldtopn |
|
231 |
|
eqid |
|
232 |
229 230 231
|
metrest |
|
233 |
209 11 232
|
sylancr |
|
234 |
228 233
|
eleqtrd |
|
235 |
234
|
adantr |
|
236 |
235
|
ad3antrrr |
|
237 |
86
|
ad2antrr |
|
238 |
|
simprl |
|
239 |
231
|
mopni3 |
|
240 |
212 236 237 238 239
|
syl31anc |
|
241 |
208 240
|
reximddv |
|
242 |
150 241
|
rexlimddv |
|
243 |
242
|
rexlimdvaa |
|
244 |
98 243
|
syl5 |
|
245 |
78 95 244
|
mp2and |
|
246 |
245
|
ralrimiva |
|
247 |
5
|
adantr |
|
248 |
|
simpr |
|
249 |
247 139 248
|
dvlem |
|
250 |
249
|
fmpttd |
|
251 |
139
|
ssdifssd |
|
252 |
139 248
|
sseldd |
|
253 |
250 251 252
|
ellimc3 |
|
254 |
30 246 253
|
mpbir2and |
|
255 |
18 19 198 138 247 137
|
eldv |
|
256 |
27 254 255
|
mpbir2and |
|