Metamath Proof Explorer


Theorem ulmf

Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Assertion ulmf F u S G n F : n S

Proof

Step Hyp Ref Expression
1 ulmscl F u S G S V
2 ulmval S V F u S G n F : n S G : S x + j n k j z S F k z G z < x
3 1 2 syl F u S G F u S G n F : n S G : S x + j n k j z S F k z G z < x
4 3 ibi F u S G n F : n S G : S x + j n k j z S F k z G z < x
5 simp1 F : n S G : S x + j n k j z S F k z G z < x F : n S
6 5 reximi n F : n S G : S x + j n k j z S F k z G z < x n F : n S
7 4 6 syl F u S G n F : n S