Database
BASIC REAL AND COMPLEX FUNCTIONS
Sequences and series
Uniform convergence
ulmf
Next ⟩
ulmpm
Metamath Proof Explorer
Ascii
Unicode
Theorem
ulmf
Description:
Closure of a uniform limit of functions.
(Contributed by
Mario Carneiro
, 26-Feb-2015)
Ref
Expression
Assertion
ulmf
⊢
F
⇝
u
⁡
S
G
→
∃
n
∈
ℤ
F
:
ℤ
≥
n
⟶
ℂ
S
Proof
Step
Hyp
Ref
Expression
1
ulmscl
⊢
F
⇝
u
⁡
S
G
→
S
∈
V
2
ulmval
⊢
S
∈
V
→
F
⇝
u
⁡
S
G
↔
∃
n
∈
ℤ
F
:
ℤ
≥
n
⟶
ℂ
S
∧
G
:
S
⟶
ℂ
∧
∀
x
∈
ℝ
+
∃
j
∈
ℤ
≥
n
∀
k
∈
ℤ
≥
j
∀
z
∈
S
F
⁡
k
⁡
z
−
G
⁡
z
<
x
3
1
2
syl
⊢
F
⇝
u
⁡
S
G
→
F
⇝
u
⁡
S
G
↔
∃
n
∈
ℤ
F
:
ℤ
≥
n
⟶
ℂ
S
∧
G
:
S
⟶
ℂ
∧
∀
x
∈
ℝ
+
∃
j
∈
ℤ
≥
n
∀
k
∈
ℤ
≥
j
∀
z
∈
S
F
⁡
k
⁡
z
−
G
⁡
z
<
x
4
3
ibi
⊢
F
⇝
u
⁡
S
G
→
∃
n
∈
ℤ
F
:
ℤ
≥
n
⟶
ℂ
S
∧
G
:
S
⟶
ℂ
∧
∀
x
∈
ℝ
+
∃
j
∈
ℤ
≥
n
∀
k
∈
ℤ
≥
j
∀
z
∈
S
F
⁡
k
⁡
z
−
G
⁡
z
<
x
5
simp1
⊢
F
:
ℤ
≥
n
⟶
ℂ
S
∧
G
:
S
⟶
ℂ
∧
∀
x
∈
ℝ
+
∃
j
∈
ℤ
≥
n
∀
k
∈
ℤ
≥
j
∀
z
∈
S
F
⁡
k
⁡
z
−
G
⁡
z
<
x
→
F
:
ℤ
≥
n
⟶
ℂ
S
6
5
reximi
⊢
∃
n
∈
ℤ
F
:
ℤ
≥
n
⟶
ℂ
S
∧
G
:
S
⟶
ℂ
∧
∀
x
∈
ℝ
+
∃
j
∈
ℤ
≥
n
∀
k
∈
ℤ
≥
j
∀
z
∈
S
F
⁡
k
⁡
z
−
G
⁡
z
<
x
→
∃
n
∈
ℤ
F
:
ℤ
≥
n
⟶
ℂ
S
7
4
6
syl
⊢
F
⇝
u
⁡
S
G
→
∃
n
∈
ℤ
F
:
ℤ
≥
n
⟶
ℂ
S