Database
BASIC REAL AND COMPLEX FUNCTIONS
Sequences and series
Uniform convergence
ulmf2
Next ⟩
ulm2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ulmf2
Description:
Closure of a uniform limit of functions.
(Contributed by
Mario Carneiro
, 18-Mar-2015)
Ref
Expression
Assertion
ulmf2
⊢
F
Fn
Z
∧
F
⇝
u
⁡
S
G
→
F
:
Z
⟶
ℂ
S
Proof
Step
Hyp
Ref
Expression
1
ulmpm
⊢
F
⇝
u
⁡
S
G
→
F
∈
ℂ
S
↑
𝑝𝑚
ℤ
2
ovex
⊢
ℂ
S
∈
V
3
zex
⊢
ℤ
∈
V
4
2
3
elpm2
⊢
F
∈
ℂ
S
↑
𝑝𝑚
ℤ
↔
F
:
dom
⁡
F
⟶
ℂ
S
∧
dom
⁡
F
⊆
ℤ
5
4
simplbi
⊢
F
∈
ℂ
S
↑
𝑝𝑚
ℤ
→
F
:
dom
⁡
F
⟶
ℂ
S
6
1
5
syl
⊢
F
⇝
u
⁡
S
G
→
F
:
dom
⁡
F
⟶
ℂ
S
7
6
adantl
⊢
F
Fn
Z
∧
F
⇝
u
⁡
S
G
→
F
:
dom
⁡
F
⟶
ℂ
S
8
fndm
⊢
F
Fn
Z
→
dom
⁡
F
=
Z
9
8
adantr
⊢
F
Fn
Z
∧
F
⇝
u
⁡
S
G
→
dom
⁡
F
=
Z
10
9
feq2d
⊢
F
Fn
Z
∧
F
⇝
u
⁡
S
G
→
F
:
dom
⁡
F
⟶
ℂ
S
↔
F
:
Z
⟶
ℂ
S
11
7
10
mpbid
⊢
F
Fn
Z
∧
F
⇝
u
⁡
S
G
→
F
:
Z
⟶
ℂ
S