Metamath Proof Explorer


Theorem ulmf2

Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 18-Mar-2015)

Ref Expression
Assertion ulmf2 F Fn Z F u S G F : Z S

Proof

Step Hyp Ref Expression
1 ulmpm F u S G F S 𝑝𝑚
2 ovex S V
3 zex V
4 2 3 elpm2 F S 𝑝𝑚 F : dom F S dom F
5 4 simplbi F S 𝑝𝑚 F : dom F S
6 1 5 syl F u S G F : dom F S
7 6 adantl F Fn Z F u S G F : dom F S
8 fndm F Fn Z dom F = Z
9 8 adantr F Fn Z F u S G dom F = Z
10 9 feq2d F Fn Z F u S G F : dom F S F : Z S
11 7 10 mpbid F Fn Z F u S G F : Z S