Database
BASIC REAL AND COMPLEX FUNCTIONS
Sequences and series
Uniform convergence
ulmi
Next ⟩
ulmclm
Metamath Proof Explorer
Ascii
Unicode
Theorem
ulmi
Description:
The uniform limit property.
(Contributed by
Mario Carneiro
, 27-Feb-2015)
Ref
Expression
Hypotheses
ulm2.z
⊢
Z
=
ℤ
≥
M
ulm2.m
⊢
φ
→
M
∈
ℤ
ulm2.f
⊢
φ
→
F
:
Z
⟶
ℂ
S
ulm2.b
⊢
φ
∧
k
∈
Z
∧
z
∈
S
→
F
⁡
k
⁡
z
=
B
ulm2.a
⊢
φ
∧
z
∈
S
→
G
⁡
z
=
A
ulmi.u
⊢
φ
→
F
⇝
u
⁡
S
G
ulmi.c
⊢
φ
→
C
∈
ℝ
+
Assertion
ulmi
⊢
φ
→
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
∀
z
∈
S
B
−
A
<
C
Proof
Step
Hyp
Ref
Expression
1
ulm2.z
⊢
Z
=
ℤ
≥
M
2
ulm2.m
⊢
φ
→
M
∈
ℤ
3
ulm2.f
⊢
φ
→
F
:
Z
⟶
ℂ
S
4
ulm2.b
⊢
φ
∧
k
∈
Z
∧
z
∈
S
→
F
⁡
k
⁡
z
=
B
5
ulm2.a
⊢
φ
∧
z
∈
S
→
G
⁡
z
=
A
6
ulmi.u
⊢
φ
→
F
⇝
u
⁡
S
G
7
ulmi.c
⊢
φ
→
C
∈
ℝ
+
8
breq2
⊢
x
=
C
→
B
−
A
<
x
↔
B
−
A
<
C
9
8
ralbidv
⊢
x
=
C
→
∀
z
∈
S
B
−
A
<
x
↔
∀
z
∈
S
B
−
A
<
C
10
9
rexralbidv
⊢
x
=
C
→
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
∀
z
∈
S
B
−
A
<
x
↔
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
∀
z
∈
S
B
−
A
<
C
11
ulmcl
⊢
F
⇝
u
⁡
S
G
→
G
:
S
⟶
ℂ
12
6
11
syl
⊢
φ
→
G
:
S
⟶
ℂ
13
ulmscl
⊢
F
⇝
u
⁡
S
G
→
S
∈
V
14
6
13
syl
⊢
φ
→
S
∈
V
15
1
2
3
4
5
12
14
ulm2
⊢
φ
→
F
⇝
u
⁡
S
G
↔
∀
x
∈
ℝ
+
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
∀
z
∈
S
B
−
A
<
x
16
6
15
mpbid
⊢
φ
→
∀
x
∈
ℝ
+
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
∀
z
∈
S
B
−
A
<
x
17
10
16
7
rspcdva
⊢
φ
→
∃
j
∈
Z
∀
k
∈
ℤ
≥
j
∀
z
∈
S
B
−
A
<
C