Metamath Proof Explorer


Theorem ulmi

Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015)

Ref Expression
Hypotheses ulm2.z Z = M
ulm2.m φ M
ulm2.f φ F : Z S
ulm2.b φ k Z z S F k z = B
ulm2.a φ z S G z = A
ulmi.u φ F u S G
ulmi.c φ C +
Assertion ulmi φ j Z k j z S B A < C

Proof

Step Hyp Ref Expression
1 ulm2.z Z = M
2 ulm2.m φ M
3 ulm2.f φ F : Z S
4 ulm2.b φ k Z z S F k z = B
5 ulm2.a φ z S G z = A
6 ulmi.u φ F u S G
7 ulmi.c φ C +
8 breq2 x = C B A < x B A < C
9 8 ralbidv x = C z S B A < x z S B A < C
10 9 rexralbidv x = C j Z k j z S B A < x j Z k j z S B A < C
11 ulmcl F u S G G : S
12 6 11 syl φ G : S
13 ulmscl F u S G S V
14 6 13 syl φ S V
15 1 2 3 4 5 12 14 ulm2 φ F u S G x + j Z k j z S B A < x
16 6 15 mpbid φ x + j Z k j z S B A < x
17 10 16 7 rspcdva φ j Z k j z S B A < C