Metamath Proof Explorer


Theorem ulmshft

Description: A sequence of functions converges iff the shifted sequence converges. (Contributed by Mario Carneiro, 24-Mar-2015)

Ref Expression
Hypotheses ulmshft.z Z = M
ulmshft.w W = M + K
ulmshft.m φ M
ulmshft.k φ K
ulmshft.f φ F : Z S
ulmshft.h φ H = n W F n K
Assertion ulmshft φ F u S G H u S G

Proof

Step Hyp Ref Expression
1 ulmshft.z Z = M
2 ulmshft.w W = M + K
3 ulmshft.m φ M
4 ulmshft.k φ K
5 ulmshft.f φ F : Z S
6 ulmshft.h φ H = n W F n K
7 1 2 3 4 5 6 ulmshftlem φ F u S G H u S G
8 eqid M + K + K = M + K + K
9 3 4 zaddcld φ M + K
10 4 znegcld φ K
11 5 adantr φ n W F : Z S
12 3 adantr φ n W M
13 4 adantr φ n W K
14 simpr φ n W n W
15 14 2 eleqtrdi φ n W n M + K
16 eluzsub M K n M + K n K M
17 12 13 15 16 syl3anc φ n W n K M
18 17 1 eleqtrrdi φ n W n K Z
19 11 18 ffvelrnd φ n W F n K S
20 6 19 fmpt3d φ H : W S
21 simpr φ m Z m Z
22 21 1 eleqtrdi φ m Z m M
23 eluzelz m M m
24 22 23 syl φ m Z m
25 24 zcnd φ m Z m
26 4 zcnd φ K
27 26 adantr φ m Z K
28 25 27 subnegd φ m Z m K = m + K
29 28 fveq2d φ m Z H m K = H m + K
30 6 adantr φ m Z H = n W F n K
31 30 fveq1d φ m Z H m + K = n W F n K m + K
32 4 adantr φ m Z K
33 eluzadd m M K m + K M + K
34 22 32 33 syl2anc φ m Z m + K M + K
35 34 2 eleqtrrdi φ m Z m + K W
36 fvoveq1 n = m + K F n K = F m + K - K
37 eqid n W F n K = n W F n K
38 fvex F m + K - K V
39 36 37 38 fvmpt m + K W n W F n K m + K = F m + K - K
40 35 39 syl φ m Z n W F n K m + K = F m + K - K
41 25 27 pncand φ m Z m + K - K = m
42 41 fveq2d φ m Z F m + K - K = F m
43 40 42 eqtrd φ m Z n W F n K m + K = F m
44 29 31 43 3eqtrd φ m Z H m K = F m
45 44 mpteq2dva φ m Z H m K = m Z F m
46 3 zcnd φ M
47 10 zcnd φ K
48 46 26 47 addassd φ M + K + K = M + K + K
49 26 negidd φ K + K = 0
50 49 oveq2d φ M + K + K = M + 0
51 46 addid1d φ M + 0 = M
52 48 50 51 3eqtrd φ M + K + K = M
53 52 fveq2d φ M + K + K = M
54 53 1 eqtr4di φ M + K + K = Z
55 54 mpteq1d φ m M + K + K H m K = m Z H m K
56 5 feqmptd φ F = m Z F m
57 45 55 56 3eqtr4rd φ F = m M + K + K H m K
58 2 8 9 10 20 57 ulmshftlem φ H u S G F u S G
59 7 58 impbid φ F u S G H u S G