Metamath Proof Explorer


Theorem ulmss

Description: A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015)

Ref Expression
Hypotheses ulmss.z Z = M
ulmss.t φ T S
ulmss.a φ x Z A W
ulmss.u φ x Z A u S G
Assertion ulmss φ x Z A T u T G T

Proof

Step Hyp Ref Expression
1 ulmss.z Z = M
2 ulmss.t φ T S
3 ulmss.a φ x Z A W
4 ulmss.u φ x Z A u S G
5 1 uztrn2 j Z k j k Z
6 2 adantr φ k Z T S
7 ssralv T S z S x Z A k z G z < r z T x Z A k z G z < r
8 6 7 syl φ k Z z S x Z A k z G z < r z T x Z A k z G z < r
9 fvres z T A T z = A z
10 9 ad2antll φ x Z z T A T z = A z
11 simprl φ x Z z T x Z
12 3 adantrr φ x Z z T A W
13 12 resexd φ x Z z T A T V
14 eqid x Z A T = x Z A T
15 14 fvmpt2 x Z A T V x Z A T x = A T
16 11 13 15 syl2anc φ x Z z T x Z A T x = A T
17 16 fveq1d φ x Z z T x Z A T x z = A T z
18 eqid x Z A = x Z A
19 18 fvmpt2 x Z A W x Z A x = A
20 11 12 19 syl2anc φ x Z z T x Z A x = A
21 20 fveq1d φ x Z z T x Z A x z = A z
22 10 17 21 3eqtr4d φ x Z z T x Z A T x z = x Z A x z
23 22 ralrimivva φ x Z z T x Z A T x z = x Z A x z
24 nfv k z T x Z A T x z = x Z A x z
25 nfcv _ x T
26 nffvmpt1 _ x x Z A T k
27 nfcv _ x z
28 26 27 nffv _ x x Z A T k z
29 nffvmpt1 _ x x Z A k
30 29 27 nffv _ x x Z A k z
31 28 30 nfeq x x Z A T k z = x Z A k z
32 25 31 nfralw x z T x Z A T k z = x Z A k z
33 fveq2 x = k x Z A T x = x Z A T k
34 33 fveq1d x = k x Z A T x z = x Z A T k z
35 fveq2 x = k x Z A x = x Z A k
36 35 fveq1d x = k x Z A x z = x Z A k z
37 34 36 eqeq12d x = k x Z A T x z = x Z A x z x Z A T k z = x Z A k z
38 37 ralbidv x = k z T x Z A T x z = x Z A x z z T x Z A T k z = x Z A k z
39 24 32 38 cbvralw x Z z T x Z A T x z = x Z A x z k Z z T x Z A T k z = x Z A k z
40 23 39 sylib φ k Z z T x Z A T k z = x Z A k z
41 40 r19.21bi φ k Z z T x Z A T k z = x Z A k z
42 fvoveq1 x Z A T k z = x Z A k z x Z A T k z G z = x Z A k z G z
43 42 breq1d x Z A T k z = x Z A k z x Z A T k z G z < r x Z A k z G z < r
44 43 ralimi z T x Z A T k z = x Z A k z z T x Z A T k z G z < r x Z A k z G z < r
45 ralbi z T x Z A T k z G z < r x Z A k z G z < r z T x Z A T k z G z < r z T x Z A k z G z < r
46 41 44 45 3syl φ k Z z T x Z A T k z G z < r z T x Z A k z G z < r
47 8 46 sylibrd φ k Z z S x Z A k z G z < r z T x Z A T k z G z < r
48 5 47 sylan2 φ j Z k j z S x Z A k z G z < r z T x Z A T k z G z < r
49 48 anassrs φ j Z k j z S x Z A k z G z < r z T x Z A T k z G z < r
50 49 ralimdva φ j Z k j z S x Z A k z G z < r k j z T x Z A T k z G z < r
51 50 reximdva φ j Z k j z S x Z A k z G z < r j Z k j z T x Z A T k z G z < r
52 51 ralimdv φ r + j Z k j z S x Z A k z G z < r r + j Z k j z T x Z A T k z G z < r
53 ulmf x Z A u S G m x Z A : m S
54 4 53 syl φ m x Z A : m S
55 fdm x Z A : m S dom x Z A = m
56 18 dmmptss dom x Z A Z
57 55 56 eqsstrrdi x Z A : m S m Z
58 uzid m m m
59 58 adantl φ m m m
60 ssel m Z m m m Z
61 eluzel2 m M M
62 61 1 eleq2s m Z M
63 60 62 syl6 m Z m m M
64 57 59 63 syl2imc φ m x Z A : m S M
65 64 rexlimdva φ m x Z A : m S M
66 54 65 mpd φ M
67 3 ralrimiva φ x Z A W
68 18 fnmpt x Z A W x Z A Fn Z
69 67 68 syl φ x Z A Fn Z
70 frn x Z A : m S ran x Z A S
71 70 rexlimivw m x Z A : m S ran x Z A S
72 54 71 syl φ ran x Z A S
73 df-f x Z A : Z S x Z A Fn Z ran x Z A S
74 69 72 73 sylanbrc φ x Z A : Z S
75 eqidd φ k Z z S x Z A k z = x Z A k z
76 eqidd φ z S G z = G z
77 ulmcl x Z A u S G G : S
78 4 77 syl φ G : S
79 ulmscl x Z A u S G S V
80 4 79 syl φ S V
81 1 66 74 75 76 78 80 ulm2 φ x Z A u S G r + j Z k j z S x Z A k z G z < r
82 74 fvmptelrn φ x Z A S
83 elmapi A S A : S
84 82 83 syl φ x Z A : S
85 2 adantr φ x Z T S
86 84 85 fssresd φ x Z A T : T
87 cnex V
88 80 2 ssexd φ T V
89 88 adantr φ x Z T V
90 elmapg V T V A T T A T : T
91 87 89 90 sylancr φ x Z A T T A T : T
92 86 91 mpbird φ x Z A T T
93 92 fmpttd φ x Z A T : Z T
94 eqidd φ k Z z T x Z A T k z = x Z A T k z
95 fvres z T G T z = G z
96 95 adantl φ z T G T z = G z
97 78 2 fssresd φ G T : T
98 1 66 93 94 96 97 88 ulm2 φ x Z A T u T G T r + j Z k j z T x Z A T k z G z < r
99 52 81 98 3imtr4d φ x Z A u S G x Z A T u T G T
100 4 99 mpd φ x Z A T u T G T