Metamath Proof Explorer


Theorem umgr0e

Description: The empty graph, with vertices but no edges, is a multigraph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 25-Nov-2020)

Ref Expression
Hypotheses umgr0e.g φ G W
umgr0e.e φ iEdg G =
Assertion umgr0e φ G UMGraph

Proof

Step Hyp Ref Expression
1 umgr0e.g φ G W
2 umgr0e.e φ iEdg G =
3 2 f10d φ iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2
4 f1f iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x = 2 iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2
5 3 4 syl φ iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2
6 eqid Vtx G = Vtx G
7 eqid iEdg G = iEdg G
8 6 7 isumgr G W G UMGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2
9 1 8 syl φ G UMGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x = 2
10 5 9 mpbird φ G UMGraph