| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgr2adedgwlk.e |  | 
						
							| 2 |  | umgr2adedgwlk.i |  | 
						
							| 3 |  | umgr2adedgwlk.f |  | 
						
							| 4 |  | umgr2adedgwlk.p |  | 
						
							| 5 |  | umgr2adedgwlk.g |  | 
						
							| 6 |  | umgr2adedgwlk.a |  | 
						
							| 7 |  | umgr2adedgwlk.j |  | 
						
							| 8 |  | umgr2adedgwlk.k |  | 
						
							| 9 |  | umgr2adedgspth.n |  | 
						
							| 10 |  | 3anass |  | 
						
							| 11 | 5 6 10 | sylanbrc |  | 
						
							| 12 | 1 | umgr2adedgwlklem |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 | 13 | simprd |  | 
						
							| 15 | 13 | simpld |  | 
						
							| 16 |  | ssid |  | 
						
							| 17 | 16 7 | sseqtrrid |  | 
						
							| 18 |  | ssid |  | 
						
							| 19 | 18 8 | sseqtrrid |  | 
						
							| 20 | 17 19 | jca |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 |  | fveq2 |  | 
						
							| 23 | 22 | eqcoms |  | 
						
							| 24 | 23 | eqeq1d |  | 
						
							| 25 |  | eqtr2 |  | 
						
							| 26 | 25 | ex |  | 
						
							| 27 | 24 26 | biimtrdi |  | 
						
							| 28 | 27 | com13 |  | 
						
							| 29 | 7 8 28 | sylc |  | 
						
							| 30 |  | eqcom |  | 
						
							| 31 |  | prcom |  | 
						
							| 32 | 31 | eqeq2i |  | 
						
							| 33 | 30 32 | bitri |  | 
						
							| 34 | 21 1 | umgrpredgv |  | 
						
							| 35 | 34 | simpld |  | 
						
							| 36 | 35 | ex |  | 
						
							| 37 | 21 1 | umgrpredgv |  | 
						
							| 38 | 37 | simprd |  | 
						
							| 39 | 38 | ex |  | 
						
							| 40 | 36 39 | anim12d |  | 
						
							| 41 | 5 6 40 | sylc |  | 
						
							| 42 |  | preqr1g |  | 
						
							| 43 | 41 42 | syl |  | 
						
							| 44 |  | eqneqall |  | 
						
							| 45 | 43 9 44 | syl6ci |  | 
						
							| 46 | 33 45 | biimtrid |  | 
						
							| 47 | 29 46 | syld |  | 
						
							| 48 |  | neqne |  | 
						
							| 49 | 47 48 | pm2.61d1 |  | 
						
							| 50 | 4 3 14 15 20 21 2 49 9 | 2spthd |  |