Metamath Proof Explorer


Theorem umgr2adedgwlklem

Description: Lemma for umgr2adedgwlk , umgr2adedgspth , etc. (Contributed by Alexander van der Vekens, 1-Feb-2018) (Revised by AV, 29-Jan-2021)

Ref Expression
Hypothesis umgr2adedgwlk.e E = Edg G
Assertion umgr2adedgwlklem G UMGraph A B E B C E A B B C A Vtx G B Vtx G C Vtx G

Proof

Step Hyp Ref Expression
1 umgr2adedgwlk.e E = Edg G
2 1 umgredgne G UMGraph A B E A B
3 2 ex G UMGraph A B E A B
4 1 umgredgne G UMGraph B C E B C
5 4 ex G UMGraph B C E B C
6 3 5 anim12d G UMGraph A B E B C E A B B C
7 6 3impib G UMGraph A B E B C E A B B C
8 eqid Vtx G = Vtx G
9 8 1 umgrpredgv G UMGraph A B E A Vtx G B Vtx G
10 9 simpld G UMGraph A B E A Vtx G
11 10 3adant3 G UMGraph A B E B C E A Vtx G
12 8 1 umgrpredgv G UMGraph B C E B Vtx G C Vtx G
13 12 simpld G UMGraph B C E B Vtx G
14 13 3adant2 G UMGraph A B E B C E B Vtx G
15 12 simprd G UMGraph B C E C Vtx G
16 15 3adant2 G UMGraph A B E B C E C Vtx G
17 11 14 16 3jca G UMGraph A B E B C E A Vtx G B Vtx G C Vtx G
18 7 17 jca G UMGraph A B E B C E A B B C A Vtx G B Vtx G C Vtx G