Metamath Proof Explorer


Theorem umgr2cwwk2dif

Description: If a word represents a closed walk of length at least 2 in a multigraph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Assertion umgr2cwwk2dif G UMGraph N 2 W N ClWWalksN G W 1 W 0

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid Edg G = Edg G
3 1 2 clwwlknp W N ClWWalksN G W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G
4 simpr W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G N 2 G UMGraph G UMGraph
5 uz2m1nn N 2 N 1
6 lbfzo0 0 0 ..^ N 1 N 1
7 5 6 sylibr N 2 0 0 ..^ N 1
8 fveq2 i = 0 W i = W 0
9 8 adantl N 2 i = 0 W i = W 0
10 oveq1 i = 0 i + 1 = 0 + 1
11 10 adantl N 2 i = 0 i + 1 = 0 + 1
12 0p1e1 0 + 1 = 1
13 11 12 eqtrdi N 2 i = 0 i + 1 = 1
14 13 fveq2d N 2 i = 0 W i + 1 = W 1
15 9 14 preq12d N 2 i = 0 W i W i + 1 = W 0 W 1
16 15 eleq1d N 2 i = 0 W i W i + 1 Edg G W 0 W 1 Edg G
17 7 16 rspcdv N 2 i 0 ..^ N 1 W i W i + 1 Edg G W 0 W 1 Edg G
18 17 com12 i 0 ..^ N 1 W i W i + 1 Edg G N 2 W 0 W 1 Edg G
19 18 3ad2ant2 W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G N 2 W 0 W 1 Edg G
20 19 imp W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G N 2 W 0 W 1 Edg G
21 20 adantr W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G N 2 G UMGraph W 0 W 1 Edg G
22 2 umgredgne G UMGraph W 0 W 1 Edg G W 0 W 1
23 22 necomd G UMGraph W 0 W 1 Edg G W 1 W 0
24 4 21 23 syl2anc W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G N 2 G UMGraph W 1 W 0
25 24 exp31 W Word Vtx G W = N i 0 ..^ N 1 W i W i + 1 Edg G lastS W W 0 Edg G N 2 G UMGraph W 1 W 0
26 3 25 syl W N ClWWalksN G N 2 G UMGraph W 1 W 0
27 26 3imp31 G UMGraph N 2 W N ClWWalksN G W 1 W 0