Metamath Proof Explorer


Theorem umgr2cwwkdifex

Description: If a word represents a closed walk of length at least 2 in a undirected simple graph, the first two symbols of the word must be different. (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Assertion umgr2cwwkdifex G UMGraph N 2 W N ClWWalksN G i 0 ..^ N W i W 0

Proof

Step Hyp Ref Expression
1 eluz2b2 N 2 N 1 < N
2 1nn0 1 0
3 2 a1i N 1 < N 1 0
4 simpl N 1 < N N
5 simpr N 1 < N 1 < N
6 elfzo0 1 0 ..^ N 1 0 N 1 < N
7 3 4 5 6 syl3anbrc N 1 < N 1 0 ..^ N
8 1 7 sylbi N 2 1 0 ..^ N
9 8 3ad2ant2 G UMGraph N 2 W N ClWWalksN G 1 0 ..^ N
10 fveq2 i = 1 W i = W 1
11 10 adantl G UMGraph N 2 W N ClWWalksN G i = 1 W i = W 1
12 11 neeq1d G UMGraph N 2 W N ClWWalksN G i = 1 W i W 0 W 1 W 0
13 umgr2cwwk2dif G UMGraph N 2 W N ClWWalksN G W 1 W 0
14 9 12 13 rspcedvd G UMGraph N 2 W N ClWWalksN G i 0 ..^ N W i W 0