Metamath Proof Explorer


Theorem umgr2edg

Description: If a vertex is adjacent to two different vertices in a multigraph, there are more than one edges starting at this vertex. (Contributed by Alexander van der Vekens, 10-Dec-2017) (Revised by AV, 11-Feb-2021)

Ref Expression
Hypotheses usgrf1oedg.i I = iEdg G
usgrf1oedg.e E = Edg G
Assertion umgr2edg G UMGraph A B N A E B N E x dom I y dom I x y N I x N I y

Proof

Step Hyp Ref Expression
1 usgrf1oedg.i I = iEdg G
2 usgrf1oedg.e E = Edg G
3 umgruhgr G UMGraph G UHGraph
4 3 anim1i G UMGraph A B G UHGraph A B
5 4 adantr G UMGraph A B N A E B N E G UHGraph A B
6 eqid Vtx G = Vtx G
7 6 2 umgrpredgv G UMGraph N A E N Vtx G A Vtx G
8 7 ad2ant2r G UMGraph A B N A E B N E N Vtx G A Vtx G
9 8 simprd G UMGraph A B N A E B N E A Vtx G
10 6 2 umgrpredgv G UMGraph B N E B Vtx G N Vtx G
11 10 ad2ant2rl G UMGraph A B N A E B N E B Vtx G N Vtx G
12 11 simpld G UMGraph A B N A E B N E B Vtx G
13 8 simpld G UMGraph A B N A E B N E N Vtx G
14 simpr G UMGraph A B N A E B N E N A E B N E
15 1 2 6 uhgr2edg G UHGraph A B A Vtx G B Vtx G N Vtx G N A E B N E x dom I y dom I x y N I x N I y
16 5 9 12 13 14 15 syl131anc G UMGraph A B N A E B N E x dom I y dom I x y N I x N I y