Metamath Proof Explorer


Theorem umgr2v2e

Description: A multigraph with two edges connecting the same two vertices. (Contributed by AV, 17-Dec-2020)

Ref Expression
Hypothesis umgr2v2evtx.g G = V 0 A B 1 A B
Assertion umgr2v2e V W A V B V A B G UMGraph

Proof

Step Hyp Ref Expression
1 umgr2v2evtx.g G = V 0 A B 1 A B
2 c0ex 0 V
3 1ex 1 V
4 2 3 pm3.2i 0 V 1 V
5 prex A B V
6 5 5 pm3.2i A B V A B V
7 0ne1 0 1
8 7 a1i V W A V B V A B 0 1
9 fprg 0 V 1 V A B V A B V 0 1 0 A B 1 A B : 0 1 A B A B
10 4 6 8 9 mp3an12i V W A V B V A B 0 A B 1 A B : 0 1 A B A B
11 dfsn2 A B = A B A B
12 fveqeq2 e = A B e = 2 A B = 2
13 prelpwi A V B V A B 𝒫 V
14 13 3adant1 V W A V B V A B 𝒫 V
15 1 umgr2v2evtx V W Vtx G = V
16 15 3ad2ant1 V W A V B V Vtx G = V
17 16 pweqd V W A V B V 𝒫 Vtx G = 𝒫 V
18 14 17 eleqtrrd V W A V B V A B 𝒫 Vtx G
19 18 adantr V W A V B V A B A B 𝒫 Vtx G
20 hashprg A V B V A B A B = 2
21 20 biimpd A V B V A B A B = 2
22 21 3adant1 V W A V B V A B A B = 2
23 22 imp V W A V B V A B A B = 2
24 12 19 23 elrabd V W A V B V A B A B e 𝒫 Vtx G | e = 2
25 24 snssd V W A V B V A B A B e 𝒫 Vtx G | e = 2
26 11 25 eqsstrrid V W A V B V A B A B A B e 𝒫 Vtx G | e = 2
27 10 26 fssd V W A V B V A B 0 A B 1 A B : 0 1 e 𝒫 Vtx G | e = 2
28 27 ffdmd V W A V B V A B 0 A B 1 A B : dom 0 A B 1 A B e 𝒫 Vtx G | e = 2
29 1 umgr2v2eiedg V W A V B V iEdg G = 0 A B 1 A B
30 29 adantr V W A V B V A B iEdg G = 0 A B 1 A B
31 30 dmeqd V W A V B V A B dom iEdg G = dom 0 A B 1 A B
32 30 31 feq12d V W A V B V A B iEdg G : dom iEdg G e 𝒫 Vtx G | e = 2 0 A B 1 A B : dom 0 A B 1 A B e 𝒫 Vtx G | e = 2
33 28 32 mpbird V W A V B V A B iEdg G : dom iEdg G e 𝒫 Vtx G | e = 2
34 opex V 0 A B 1 A B V
35 1 34 eqeltri G V
36 eqid Vtx G = Vtx G
37 eqid iEdg G = iEdg G
38 36 37 isumgrs G V G UMGraph iEdg G : dom iEdg G e 𝒫 Vtx G | e = 2
39 35 38 mp1i V W A V B V A B G UMGraph iEdg G : dom iEdg G e 𝒫 Vtx G | e = 2
40 33 39 mpbird V W A V B V A B G UMGraph