Metamath Proof Explorer


Theorem umgr2wlkon

Description: For each pair of adjacent edges in a multigraph, there is a walk of length 2 between the not common vertices of the edges. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 30-Jan-2021)

Ref Expression
Hypothesis umgr2wlk.e E = Edg G
Assertion umgr2wlkon G UMGraph A B E B C E f p f A WalksOn G C p

Proof

Step Hyp Ref Expression
1 umgr2wlk.e E = Edg G
2 1 umgr2wlk G UMGraph A B E B C E f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2
3 simp1 f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G p
4 eqcom A = p 0 p 0 = A
5 4 biimpi A = p 0 p 0 = A
6 5 3ad2ant1 A = p 0 B = p 1 C = p 2 p 0 = A
7 6 3ad2ant3 f Walks G p f = 2 A = p 0 B = p 1 C = p 2 p 0 = A
8 fveq2 2 = f p 2 = p f
9 8 eqcoms f = 2 p 2 = p f
10 9 eqeq1d f = 2 p 2 = C p f = C
11 10 biimpcd p 2 = C f = 2 p f = C
12 11 eqcoms C = p 2 f = 2 p f = C
13 12 3ad2ant3 A = p 0 B = p 1 C = p 2 f = 2 p f = C
14 13 com12 f = 2 A = p 0 B = p 1 C = p 2 p f = C
15 14 a1i f Walks G p f = 2 A = p 0 B = p 1 C = p 2 p f = C
16 15 3imp f Walks G p f = 2 A = p 0 B = p 1 C = p 2 p f = C
17 3 7 16 3jca f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G p p 0 = A p f = C
18 17 adantl G UMGraph A B E B C E f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f Walks G p p 0 = A p f = C
19 1 umgr2adedgwlklem G UMGraph A B E B C E A B B C A Vtx G B Vtx G C Vtx G
20 simprr1 G UMGraph A B E B C E A B B C A Vtx G B Vtx G C Vtx G A Vtx G
21 simprr3 G UMGraph A B E B C E A B B C A Vtx G B Vtx G C Vtx G C Vtx G
22 20 21 jca G UMGraph A B E B C E A B B C A Vtx G B Vtx G C Vtx G A Vtx G C Vtx G
23 19 22 mpdan G UMGraph A B E B C E A Vtx G C Vtx G
24 vex f V
25 vex p V
26 24 25 pm3.2i f V p V
27 26 a1i G UMGraph A B E B C E f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f V p V
28 eqid Vtx G = Vtx G
29 28 iswlkon A Vtx G C Vtx G f V p V f A WalksOn G C p f Walks G p p 0 = A p f = C
30 23 27 29 syl2an2r G UMGraph A B E B C E f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f A WalksOn G C p f Walks G p p 0 = A p f = C
31 18 30 mpbird G UMGraph A B E B C E f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f A WalksOn G C p
32 31 ex G UMGraph A B E B C E f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f A WalksOn G C p
33 32 2eximdv G UMGraph A B E B C E f p f Walks G p f = 2 A = p 0 B = p 1 C = p 2 f p f A WalksOn G C p
34 2 33 mpd G UMGraph A B E B C E f p f A WalksOn G C p