Metamath Proof Explorer


Theorem umgr3cyclex

Description: If there are three (different) vertices in a multigraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017) (Revised by AV, 12-Feb-2021)

Ref Expression
Hypotheses uhgr3cyclex.v V = Vtx G
uhgr3cyclex.e E = Edg G
Assertion umgr3cyclex G UMGraph A V B V C V A B E B C E C A E f p f Cycles G p f = 3 p 0 = A

Proof

Step Hyp Ref Expression
1 uhgr3cyclex.v V = Vtx G
2 uhgr3cyclex.e E = Edg G
3 umgruhgr G UMGraph G UHGraph
4 3 3ad2ant1 G UMGraph A V B V C V A B E B C E C A E G UHGraph
5 simp2 G UMGraph A V B V C V A B E B C E C A E A V B V C V
6 2 umgredgne G UMGraph A B E A B
7 6 3ad2antr1 G UMGraph A B E B C E C A E A B
8 prcom C A = A C
9 8 eleq1i C A E A C E
10 9 biimpi C A E A C E
11 10 3ad2ant3 A B E B C E C A E A C E
12 2 umgredgne G UMGraph A C E A C
13 11 12 sylan2 G UMGraph A B E B C E C A E A C
14 simp2 A B E B C E C A E B C E
15 2 umgredgne G UMGraph B C E B C
16 14 15 sylan2 G UMGraph A B E B C E C A E B C
17 7 13 16 3jca G UMGraph A B E B C E C A E A B A C B C
18 17 3adant2 G UMGraph A V B V C V A B E B C E C A E A B A C B C
19 simp3 G UMGraph A V B V C V A B E B C E C A E A B E B C E C A E
20 1 2 uhgr3cyclex G UHGraph A V B V C V A B A C B C A B E B C E C A E f p f Cycles G p f = 3 p 0 = A
21 4 5 18 19 20 syl121anc G UMGraph A V B V C V A B E B C E C A E f p f Cycles G p f = 3 p 0 = A