| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
1
|
clwwlkbp |
|
| 3 |
2
|
adantl |
|
| 4 |
|
lencl |
|
| 5 |
4
|
3ad2ant2 |
|
| 6 |
5
|
adantl |
|
| 7 |
|
hasheq0 |
|
| 8 |
7
|
bicomd |
|
| 9 |
8
|
necon3bid |
|
| 10 |
9
|
biimpd |
|
| 11 |
10
|
a1i |
|
| 12 |
11
|
3imp |
|
| 13 |
12
|
adantl |
|
| 14 |
|
clwwlk1loop |
|
| 15 |
14
|
expcom |
|
| 16 |
|
eqid |
|
| 17 |
|
eqid |
|
| 18 |
17
|
umgredgne |
|
| 19 |
|
eqneqall |
|
| 20 |
16 18 19
|
mpsyl |
|
| 21 |
20
|
expcom |
|
| 22 |
15 21
|
syl6 |
|
| 23 |
22
|
com23 |
|
| 24 |
23
|
imp4c |
|
| 25 |
|
neqne |
|
| 26 |
25
|
a1d |
|
| 27 |
24 26
|
pm2.61i |
|
| 28 |
6 13 27
|
3jca |
|
| 29 |
3 28
|
mpdan |
|
| 30 |
|
nn0n0n1ge2 |
|
| 31 |
29 30
|
syl |
|
| 32 |
31
|
ex |
|